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POLYHEDRA
i: THE PLATONIC SOLIDS

A.V. Nikov*

Regular patterns and figures have always played an important part in the civilizations
of mankind. The regular polygons and solids (polyhedra) were objects of intense study
by the ancient Greeks (circa 300 B.C.) not only because of their geometrical properties
but also because they acquired mysterious, semi-religious powers and were held to con-
tain the secrets of the universe. This idea died hard. Centuries later the great Johannes
Kepler (15671-1630), whose epoch-making scientific work started modern physics, was
stili convinced of the truth of these connections. He boldly atiempted to relate the
regular polyhedra to the real physical world and conceived & remarkable construction to
represent the positions and movements of the planets (see figure 1).

Today we know that his model does not represent the solar system, if only because
there are more planets than regular polyhedra, so there is no possible simple cor-
respondence of the kind he envisaged.

However, interest and research in polyhedra has continued and is still going on.

The ancient Greeks knew, and could prove, that there exist exactly five regular
polyhedra, frequently called the Platonic solids. (A regular polyhedron is a solid whose
faces are all the same regular polygon, and with the same number of edges meeting at
each vertex.) An interesting and important connection between the number of vertices
(corners) V, the number of edges, E, and the number of faces, F, escaped their notice. It
was discovered by Leonhard Euler {1707-1783), after whom it is named. It is the formula

V-E+F-=2
which we will prove.

*Mrs Nikov is a Senior Tutor in Pure Mathematics at the University of New South Wales.
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Figure 1 1

Consider the skeletal model of a polyhedron and imagine it projected onto a screen in
such a way that the light source is reasonably close to, and perpendicularly above, the
centre of one of the faces. In figure 2 we show this projection for the cube.

The result is a network in the plane of projection. Each line segment in this network
represents an edge and each region a face, with the exception of the face closest to the
light source. We compensate for this by counting the surrounding infinite region as a
“face”. Now we will show that in fact V—E+F=2 holds for any connected network in
the plane, and so our result is much more general than that which we set out to prove.

A network is a figure in the plane consisting of a finite number of arcs or edges,
which meet only at their endpoints, or vertices. The regions into which the network sub-
divides the plane are called faces. |



Figure 2 Figure 3

Consider an arbitrary connected planar network, as shown in figure 3.
We can transform this network by any of the following processes:

i} Add a new edge starting from an existing vertex and ending in a new vertex {A in
- figure 3). Added: 1 vertex, 1 edge, no faces.

i) Add a new vertex to an existing edge (B in figure 3). Added: 1 vertex, 1 edge, no
faces.

1) Add a new edge connecting two existing vertices (C and D in figure 3). Added: no
vertices, 1 edge, 1 face.

We note that these processes do not alter the quantity V —E +E. Furthermore, any
connected network arises from a single point in the plane by successive applications of
the above processes, and for the single point in the plane V = 1,E=0F = 1, 40
V—E+F = 2,

With the aid of Euler's Formula, we can show that there are five Platonic solids.
Suppose n edges meet at every vertex. Then, counting every edge twice, we obtain
nV = 2E, so V = 2E/n.

Suppose every face of the polyhedron has r edges. Then, again counting every edge
twice, we obtain
rF = 2E, so F = 2E/r.
Substituting these into Euler's Formula, we obtain '
2EIn - E + 2Eir = 2
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‘and, dividing by 2E, |
Un + 1 — 12 = 1.
it is clear from the definition of n and r that each of these numbers must be at least 3.
On the other hand they cannot both be greater than 4, for in that case we would have
1ME = 1In + 1r — 112 =14 + 114 - 1/2 = 0,

but E cannot be negative. So by tabulating all the possible cases we obtain all the
Platonic solids:

E V F name of polyhedron
6 4 4  tetrahedron

12 8 6 cube

30 20 12 dodecahedron

12 6 8 octahedron

30 12 20 icosahedron
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OTHER JOURNALS YOU MAY ENJOY

There are two journals that | know of that you may like to subscribe to. Both aim at
the same readership as Parabola, yet are rather different from Parabola and each other. |
think you may enjoy reading them! They are “Function’, produced by Monash Univer-
sity, and “Trigon”, produced by the University of Adelaide.

“Function”

Cost of subscription (including postage): $3.50
Address: The Business Manager,
Function,
Department of Mathematics,
Monash University,
CLAYTON. VIC. 3168

“Trigon™
Cost of subscription (including postage): $1.00
Address: Mrs M. Wardrop,

Woattle Park Teachers' Centre,

424 Kensington Road,

WATTLE PARK. S.A. 5066
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