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POLYHEDRA
il: THE DELTAHEDRA

A.V. Nikov*

The marvellous formula of Euler,
V-E+F=2
can yield interesting results other than that concerning the Platonic Solids.
Suppose we ask the following question. How many convex polyhedra are there with only
equilateral triangles for faces (but not necessarily the same number of faces meeting at each

- vertex)? These polyhedra are called deltahedra, after the Greek letter delta A. {Here “‘convex” is to

be taken to mean “strictly convex”, in the sense that no two adjacent faces should even lie in the
same plane).

Every face has three edges, so, counting each edge twice, we have
2E = 3F ‘ {i)

At each vertex, either 3, 4 or 5 edges meet, since if 6 edges met at a vertex, the polyhedron
would-flatten out at that vertex, which we don’t allow.

Consequently, let V3, V4, Vs be the number of vertices where 3. 4, & edges meet, respectively.
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We note that
Vi + Va 4 Vg = V - (i)

and, counting every edge twice {once for each end),

3Vs + 4V4 + BVs = 2F (i)
Now, V-E+F=2
s0 6V — 6E + 6F = 12,
so by (i) 6V — 6E + 4E = 12,
o, | 6V — 2E = 12,
so by i), {iii) CBIVa + Vs V) - (3V3 4 4Ve 4+ BV — 12,
so finally, 3Va + 2V4 + Vg = 12 (iv)

This last equatioh has onfy finitely many solutions with V3, Va4, Vs non-negative, and we can
tabulate them systematically, as follows:

Clearly V3 < 4. For each value of V3, Va = 0,1, 2, 3, 4, we write 2V, + Vs = 12 — 3V;
Thus V4 < %012 — 3V3). For each such value of V., Vs is determined by .
Vs = 12 — 3V3 — 2V,.

Thus we arrive at the following table of solutions:

V3 Va4 Vs
1. 0 0 12
] 0 1 10
3. 0 2 8
4. 0 3 6
5. 0 4 4
6. 0 5 2
7. 0 6 0
8. 1 0 9
9. 1 1 7
10. 1 2 5
11. 1 3 3
12. 1 4 1
13. 2 0 6
14. 2 1 4
15. 2 2 2
16. 2 3 0
17. 3 0 3
18 3 1 1
19. 4 0 0

This table lists 19 solutions to (iv), but there is no guarantee that we can actually construct a



_polyhedron to each set of specifications. Indeed, using geometric arguments, we shall show that
~only 8 of them are constructible. :

‘Consider those cases for which V3 > 0, that is, there is at least one vertex where only 3 edges
meet. (This vertex is quite “sharp”, and it turns out to be quite ‘hard to construct a convex
'polyhedron with such a vertex). If we join three triangles to form the vertex, then we can either (a)
close it off with a fourth triangle to form a tetrahedron or (b) attach triangles around the base to
‘form the “double triangular pyramid” (see figures 1(a), {b).)

Figure 1

“indeed, these are the only two deltahedra with a triple vertex. For if we try to close off the triple
vertex in any other way, we miust insert a triangle at A, B or C {see figure 2) but in doing so we
push two triangles apart, causing the sides to flatten out {which is not permitted).
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m Figure 2

Thus we have shown that of the cases 8-19, only two are constructible, namely {(19) and (16).
The remaining cases 1-7 are constructible, with the exceptlon of No.2 (V3 = 0, Vq = 1, Vs =
10). To show that No. 2 is not constructible, we shall try to form it.

Start with four triangles joined to form the one vertex of order 4 (see figure 3 (a)). All other ver-
tices have order 5, so we see that the construction must proceed as in figure 3(b). We now have 9
vertices all together, and it is easy to see that it is impossible to have two more vertices.

" Figure 3



To show that the remaining cases are indeed constructible we give you patterns for them in
figure 4.

You may be interested to know that the apparently simple theorem which states “There are

precisely eight deltahedra” was proved only as recently as 1947, by two famous mathematicians,
B.L. van der Waerden and H. Freudenthal.

Problem. How many types of polyhedra are there with precisely 5 (not necessarily regutar) faces?
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