SOLUTION TO CROSS-NUMBER PUZZLE The solution to the cross-number puzzle given in Vol. 14 No. 1 is | | | , | ^a 1 | b ₉ | |----------------|----------------|--------|----------------|----------------| | | ^c 1 | 6 | 0 | 0 | | ^d 1 | 0 | | e ₈ | 0 | | | f 6 | 4 | | | | | 4 | | g 2 | 7 | | h 2 | | i
1 | 0 | | ## P. Crump gave the following proof: From (g) down, $\sqrt{(f)}$ across is rational, also (f) across is a cube, and $10 \le (f)$ across ≤ 99 , so (f) across = 64. From (e) across, $10 \le 8 \times$ (d) across ≤ 99 , and (d) across is an integer, so $2 \le$ (d) across ≤ 12 . But $10 \le$ (d) across ≤ 99 , so (d) across = 10, 11, or 12. (g) across is a 2-digit cube, so = 27 or 64. Suppose (g) across is 64. Then (b) down gives 16 \times ((d) across)² \leq 999, clearly inconsistent with (d) across = 10, 11 or 12. So (g) across = 27, (b) down gives $9 \times ((d) \text{ across})^2 \leq 999$, so (d) across = 10, (b) down = 900. From (g) down, $20 \le (a) \ \text{across} + 9 - 8 \le 29$ 19 ≤ (a) across ≤ 28 but (a) across is prime, ends in 9, so (a) across = 19, (g) down = 20. From (d) across, (h) across = 2, so (i) across = 10, (e) across = 80, (a) down = 108, (c) across = 1600, (c) down = 1064. Correct solutions were received also from S.S. Wadhwa, J. Taylor, and of course the proposer, A. Lenart.