SOLUTION TO CROSS-NUMBER PUZZLE

The solution to the cross-number puzzle given in Vol. 14 No. 1 is

		,	^a 1	b ₉
	^c 1	6	0	0
^d 1	0		e ₈	0
	f 6	4		
	4		g 2	7
h 2		i 1	0	

P. Crump gave the following proof:

From (g) down, $\sqrt{(f)}$ across is rational, also (f) across is a cube, and $10 \le (f)$ across ≤ 99 , so (f) across = 64.

From (e) across, $10 \le 8 \times$ (d) across ≤ 99 , and (d) across is an integer, so $2 \le$ (d) across ≤ 12 . But $10 \le$ (d) across ≤ 99 , so (d) across = 10, 11, or 12.

(g) across is a 2-digit cube, so = 27 or 64. Suppose (g) across is 64. Then (b) down gives 16 \times ((d) across)² \leq 999, clearly inconsistent with (d) across = 10, 11 or 12.

So (g) across = 27, (b) down gives $9 \times ((d) \text{ across})^2 \leq 999$,

so (d) across = 10, (b) down = 900.

From (g) down,

 $20 \le (a) \ \text{across} + 9 - 8 \le 29$

19 ≤ (a) across ≤ 28

but (a) across is prime, ends in 9,

so (a) across = 19, (g) down = 20.

From (d) across, (h) across = 2,

so (i) across = 10, (e) across = 80, (a) down = 108, (c) across = 1600, (c) down = 1064.

Correct solutions were received also from S.S. Wadhwa, J. Taylor, and of course the proposer, A. Lenart.