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414. Find all positive integers n and k such that the three binomial coefficients nCy, "Cy, 1 and
- "Cy, 2 are in arithmetic progression.

418. Thirty-two counters are placed on a chess-board so that there are four in every row and four
in every column, Show that it is always possible to select eight of them so that there is one of the
eight in each row and one in each column. ‘

416. Let S be a convex area which is symmetric about the point O. Show that the area of any
triangle drawn in S is less than or equal to half the area of S,

(Definition: A set is symmetric about the point O if whenever a point A is in the set, so is the point
B which lies at the same distance from O as A on the line AO produced.)

SOLUTIONS TO PROBLEMS FROM VOLUME 14, NUMBER 2

381. A square cake has frosting on its top and all four sides. Show how to cut it to serve nine
people so that each one gets exactly the same amount of cake and exactly the same amount of
frosting. :

Solution:

For example, mark nine points equally spaced round the perimeter of the cake as in the figure.
Make nine vertical cuts along lines joining each of these points to O, the centre of the square top
surface of the cake. It is simple to check that the nine areas (such as AOB, BOC, COD, in the
figure) are all equal and therefore that all nine people receive the same volume of cake, the same
quantities of top icing and the same quantities of side icing. We leave it to you to fill in the details.
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There are many other solutions. Kurt Svendsen (Busby High School) sent in the following witty
answer: First, slice the side icing off two opposite sides of the cake and slice each slab of icing in-
to nine pieces. Then cut the remaining cake into nine slabs. Simple. But this, and also the solution

from Peter Crump (Sydney Grammar), have the aesthetic drawback that each person’s share is in a
number of fragments. '

382, Prove or disprove: There are two humbers xysuchthatx + y = 1, x2 + y2 = 2 and
X2 4 2 3 : ‘

Solution from Peter Crump (Sydney Grammar):

Suppose x +y = 1, (1)
: Xt 4y 2 {2)
and X'+ y? = 3, ' (3)

From (1) and (2), 1 = (x+y)? = x® + 2xy + y? = 2 + 2xy, hence

xy = ~%, _ (4)
From(1)and (3), 1 = (x+y)? = x3 + 3xylx+y) + y? = 3 + 3xy, hence ,
: xy = — %, | ) (5)

Since (4) and (5) are contradictory, there are no numbers x, y satisfying (1), (2) and (3).
Correct solutions were also received from Kurt Svendsen {Busby High School) and Su;inder
Wadhwa (Ashfield Boys’ High School).

383, |Let p(1), p(2), ... p(n) be n points in the plane. Show that the shortest broken line connecting
the points does not cross itself,

Solution:

“A broken line connecting the pomnts’” means a line made by starting at one of the points, draw-
ing a straight line segment ending at a second point, then another straight line segment from the
second point to a third point and so on, until all the points have been reached.

Suppose that such a broken line crosses itself. Let AB and CD be two segments which intersect,



occurring in that order in the broken line and described in the sense indicated by the arrows as the
broken line is drawn. (See Figure 1.) Then a shorter broken line is obtained by replacing AB and
CD by AC and BD and reversing the direction of traversing the line segments joining B to C in
Figure 1. (See Figure 2.)
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We have to show that the sum of the lengths AC + BD is less than the sum of the lengths AB
+ CD. Let P be the point of intersection of AB and CD. Then

AB + CD = AP + PB + CP + PD = (AP + CP) + (PB + PD) > AC + BD.

(Only minor changes in the argument are needed if P coincides with one of A, B, C, or D. If Pis
. itself one of the points, replace the path by AC and BPD to get a shorter line.)
A correct solution was received from Kurt Svendsen {Busby High School.)

384. When the fire alarm went off, the six patrons in the restaurant all hurriedly seized a coat. (1)
Safely outside, they discovered that no-one had his own. (2) The coat that Alf had belonged to the
- man who had seized Bert's. (3) The owner of the coat grabbed by Colin held a coat which belonged to
the man who was holding Dave’s coat. (4) The man who had seized Ern’s coat was not the owner of
that grabbed by Fred. Who borrowed Alf's coat? Whose coat did Alf seize? How do you know?

Solution:

A convenient notation for describing the situation is to use "disjoint cycles" as illustrated by, say

! (ADE)(CF)(B) This would mean that A took D's coat, D took E's and E took A's (completing one

~ “cycle™), that C and F took each other's coats, and B took his own. Notice that each letter occurs
exactly once. (We are using A for Alf and so on, so that this particular example does not satisfy
the conditions of the problem.) Also, the sum of the “lengths” of the cycles (that is 3+2+1 in the

 illustration) is 6.

-~ Now to the problem. By (1), there is no cycle of Iength 1. By (2), the cycle containing A also
* contains B with just one letter in between (that is (. . ..)). By (3), the cycle containing C also
% contains D with just two letters in between (that is ( CxxD ..} If these two cycles are dif-
- ferent, we have used 7 letters, and this is not atiowed. So A, B, C and D occur in one cycle. There
is ho way of arranglng the 4 letters A, B, C, D to satisfy both requirements, so this cycle is of



length at least 5. But it cannot have length 5 since that would leave one letter over to form a cycle
of length 1. Hence the actual situation is described by a single cycle of length 6: either (ACBxDx)
or (xCxADB), where the letters E and F have yet to be inserted. By (4), F cannot appear two places
to the left of E, so the possibilities are (ACBEDF) or (ECFADB). In either case, it was F (Fred) who
took A’s (Alf's) coat. Alf took either Colin’s or Dave’s coat.

An excellent solution was received from Gerard Bensoussan (North Sydney Boys’ High School).

385. Let v be the number of vertices of a convex polyhedron, e the number of edges, and f the
number of faces. Then Euler's formulaisv — e + f = 2,

(i) Show that for any convex polyhedron 3f € 2e and 3v € 2e (Count the edges round each
face, and at each vertex) :

(ii) Prove or disprove: It is possible to cut a potato into a convex polyhedron havmg ‘exactly
seven edges.

Solution: _

il Counting the number of edges round each face and summing’gives 2e since each edge has
been counted twice, once in each of the two faces which meet along that edge. Thus 2e = af,
where a is the average number of edges per face. Since each face has at least 3 edges, a = 3 and
s0 2e = 3f.

Counting the number of edges at each vertex and summing also gives 2e since each edge has
again been counted twice, once at each of the two vertices at its endpoints. Thus 2e = bv, where
b is the average number of edges meeting at a vertex. Since each vertex is the junction of at least
3 edges, b 2 3 and so 2e > 3v.

(i) By (i), 3f € 2.7 = 14 whence f € 4 and, similarly, v < 4.

Consequently, v + f ~ e <4 + 4 - 7 = 1, Thus Euler's formula cannot be satisfied and a con-
vex polyhedron with 7 edges cannot exist. ;

Alternatively it is obvious that there is no polyhedron with v € 3 and that |f v = 4, the four ver
tices must determine a tetrahedron which has only 6 edges.

A correct solution was recelved_ from Kurt Svendsen (Busby High School),

386. Determine all polynomials fx) = ax? + bx + ¢ such that
fla) = a, fib) = b, and flc) =

i



Solution:
- Ifa = 0, the graph of ax? + bx + ¢ is a straight line passing through the points (0,0), (b,b) and
{c.c). Hence it must be the line Y = x unless all of a8, b and ¢ are 0, Thus we have so far two
possible answers: fix} = x and f(x) = 0.
if as= 0,] the graph of ax? + bx + ¢ is a parabola. It cannot pass through three distinct points
(a,a), (b,b) and (c,c) which are collinear. Hence we must have eithera = b,a = ¢, orb = c.

i

First case. Suppose f(x) = ax2 + ax + ¢ with a = 0. The condition flc) = ¢ gives

ac? + ac + ¢ = ¢, whence ¢ = —¢, thatis¢c = 0 or =1. It ¢ = 0, then fla) = a yields
a® + a* = a, whence a = % (-1 + B\ if ¢ = =1, then fla) = a yields a® + a2 — 1 = a, that
is la+1Ma®~1) = 0, whence a = +1. So we have here two more solutions: fx) = alx?+ x) with
a= %11+ B and flx) = +0E+x) - 1, o

Second case. Suppose flx) = ax? + bx + awith a % 0. The condition f(a) = a gives

a®+ ab + a = g, whence b = -—a2 The condition fib} = b gives ab? + b? + a = b which,
with our previous conclusion, gives a5 + a% + a? + g = 0, that is ala+1)%a*-a+1) = 0. If
a = —1,thenb = -1 giving a solution already obtained in the first case. If a? — a + 1 = 0, we

obtain a complex solution: a = ¢ = %(1 + Vi=3), b = %(-1 ¢+ /(-3)) and
f{x) = ax? - a’ + a.
Third case. Suppose f(x) = ax* + bx + b with a # 0. The condition f(b) = b gives

ab* + b* + b = b, thatis (a+1)b? = 0,s0a = ~lorb = 0. lfa = -1, then fla) = a yields
a®+ ab'+ b = a, thatis =1 — b + b = —1 which is true for all b. If b = 0, the condition

fla) = a gives a® = &, whence a = +1. So we have the final two solutions:

fix} = —x? + bx + b for any b and f(x) = + X2, i

Partly correct solutions were received from Peter Crump (Sydney Grammar), Surinder Wadhwa
(Ashfield Boys’ High School) and Otis Wright (Davidson High School), all of whom managed to
“lose” some solutions.

387. Finitely many pennies are placed on a flat surface, no two overlapping. Prove or disprove:
No matter how this is done, it is always possible to paint each penny with one of three colours so
that no two pennies having the same colour touch each other.

Solution.

The statement is false. Consider the arrangement of coins in the figure. If we commence colour-
ing the coins using the colours red, white and blue by painting A red, then it is easy to see that
the coins B, C, D and E must also be red. Now pivot the lower arm of 6 coins from A to C about
the centre of C until A makes contact with E. One or other of these two coins now requires a new
colour.



The counterexample is rather surprising. Can you find an arrangemeant with fewer ¢ian 11 coins
which disproves the assertion in the problem? :

388. Let a list of integers a(1), a(2), . .., a(n’, . .. be defined in succession by
aln+1) = (aln)? - aln) + 1 and all) = 2.

The first few are al1) = 2, al2) = 3, a(3) = 7, al) = 43, al6) = 1807,...
Show that the integers a(1), a(2), a(3),.. . are pairwise relatively prime (i.e. if alk} and a(f) are any
two different members of the list, they have no common factor except 1).

Solution:
We prove first, using mathematical induction, that
aln) = a(l)., ....aln=1) + 1forn 22, _ 1)

that Is, each ain) is one more than the product of all previous terms In the list. This can be check-
ed immediately for n = 2. Now suppose (1) is true for n = m, say, and consider alm +1). From
the definition of the sequence, ' 155G

alm+1) = alm)? — alm) + 1 = [alm)—1]laim) + 1
= [a(1).al2). ... .alm-1)alm) + 1.

an



" This is {1) withn = m+ 1. Thus the induction step has been established and {1) is proved.
Now suppose n > m. Then, by n,

aln) = a(1).a2). .., .alm). .an-1) + 1,

whence it is clear that any common divisor of aln) and a{m) would also divide 1, Thus aln) and
alm) must be relatively prime.

389. For the same list of integers a(1), a(2), . .., aln), ... in question 388 show that by taking n
very large ;

[(Va(h) + (1al2) + ... + (1aln) - 1] < 110

Solution: ‘
We again use mathematical induction to prove that
al)=' + a2 + ...+ a1 =1~ [all).al2) . ... .an)]-". (2)

~ This can be checked immediately for n = 1, thatis % = 1- 1%. Assume that (2} is true for
n = m. Then
all)=' + al2-1 + ... + am)-1 + am+1)-1 = {1 - [al1}.a(2).....aml-'} + alm+1)-1
=1~ {aim+1) - a).a(2.....am}al).a2. ....alm alm+1)
=1-1al1).a(2.....alm).alm+1),
where we have used (1) in the answer to question 388 to make the last step. This gives (2) for
n = m + 1, whence (2) must be true for all n.

Thus the sum of reciprocals on the left of (2) differs from Tbylall).al2). ... .aln)-1 which is
less than 10-10 for all n > 6. -

390. Letb(1), b(2), ..., bin) be any positive numbers ‘
Prove that (b(1) + b(2) + ...+ b (1AM + (BN +... + (1bln) = n

Solution:
If x and y are both positive, then
: : xly + yix > 2. : (1

This follows from (x—y)? 2 0, that Is x2 + y2 > 2xy, after dividing through by xy.
Now ' ‘ :

S = [b(1) + b2} +1... + b1 + b@R)-1 + ... + bin)-1]
= £ blib() + r blidb(j} + b{j)/bfi)}.
1<j<n by _1<i<j<n{ ('._ ,j, ,_,} i L S
The first part is the sum of n terms each equal to 1. The second part Is the sum of %nin-—1)

terms (that is the number of ways of choosing two different numbers i and j from {1, 2, ..., n}
and each of these terms is greater than or equal to 2, in view of (1). Hence

S2n1 + %nn=-1).2 = n&,



391. Each of three classes has n students. Each student knows altogether (n+ 1) students in the
other two classes. Prove that it is possible to select one student from each class so that all three
know one another. {Acquaintances are always mutual).

Solution:

Let k (> 1) be the smallest number of acquaintances of any student with the students in one of
the other classes. Label the classes A, B and C, so that there is a student a in class A who has ex-
actly k acquaintances in class B and let b be one of these acquaintances. Now, a has (n+1) -k ac-
quaintances in class C, so there are only k —1 students in C not acquainted with a, By our defini-
tion of k, b knows at least k students in C and at least one of these, ¢ say, must be known to a.
Thus a, b and ¢ are mutual acquaintances from the three classes.

A partial solution was received from Surinder Wadhwa (Ashfield Boys’ High School).

392. Let S consist of the set of all points (x,y) in the Cartesian plane such that x and y are both
integers. The centre of gravity of the triangle with vertices (x(1),y(1)), (x(2),y(2)), (x(3),y(3) is the
point {(x(1) + x(2) + x(3N/3, (y(1) + yi{2) + y(3)/3).

Prove that out of any 9 points in S, it is always possible to choose 3 with the property that the
centre of gravity of the triangle formed by them is also a point in S.

Solution:

We have to show that given any nine points (xfi), y({i)} in S, it is possible to find three of them,
say i = k, £and m, so that x{k) + x(f) + x{m) and ylk) + y{) + y(m) are both multiples of 3. Since only
remainders on division by 3 are relevant, we represent the points by crosses on the grid in Figure
1, for example, if we have a point whose x-coordinate has remainder 1 mod 3 and whose
y-coordinate has remainder 2 mod 3, then we put a cross in the (1,2)-square in Figure 1, as shown,

Now, observe that the sum of three integers a, b and ¢ can give a multiple of 3 in only two
ways: either 8, b and ¢ all have the same remainder mod 3, or these remainders are some arrange-
ment of 0, 1 and 2 (each occurring once). If there are three points in some square of the grid in
Figure 1 then the x-coordinates of these points all have the same remainder mod 3 and their
y-coordinates all have the same remainder mod 3, so these 3 points have the required property.
The only other way to achieve this end Is to find three points which lie in the same row or column
of the grid (Figure 2), or three points forming a pattern with just one in each row and one in each
column (Figure 3).
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From the above remarks, we can suppose that at most two of the points fall in any square of
the grid; since there are nine points in all, at least five squares in the grid are occupied. Also, we
can suppose that at most two squares in any row or column are occupied, because if we have
three points in a row or column (as in Figure 2), these points solve the problem. We have to show
that if we draw five crosses on our grid with at most two in any row or column, then we can
choose three forming the pattern typified by Figure 3.

Under the above assumptions, there are two rows each with two crosses and one row with just
one cross. Since the labels in Figure 1 are no longer relevant, we can suppose the first row is the
one with a single cross, Similarly, there is one column containing a single cross. If this special col-
umn is the first column, then the five crosses must ke as in Figure 4 and the points corresponding
to the bold crosses solve the problem. Otherwise, we can suppose the special column is the sec-
ond, and then we get Figure § which also has three points with the required property.

X X
XX XX
XA XX

ngure 4 Figure 5

A correct solution was received from Kurt Svendsen (Busby High School).
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