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A RATIONAL APPROACH TO IRRATIONAL NUMBERS
G. Szekeres*

One of the great discoveries of the Pythagorean era was the fact that not all positive numbers
are "commensurable”, that is, expressible as a fraction alb where a and b are natural numbers. In
modern terminology the Pythagoreans discovered irrational numbers. The first and perhaps the
simplest example of such a number was V2 and you probably know the ingenious argument by
which Pythagoras proved its irrationality. Suppose that 2 was rational, 2 = a/b say, where a
and b may be assumed to be relatively prime. Squaring the equation and multiplying through with
b* we get a*> = 2b? which can only hold if a is even, a = 2c¢ say. But then 4¢2 = 2b? or b? = 2¢2,
that is b is also even, in contradiction to the assumption that a and b have no common divisor
greater than 1. This same argument works for all numbers of the form \/d where d is any positive
integer not a perfect square.

We shall now prove the irrationality of V2 by a very different, and you may say far more difficult
method which, on the other hand, can be applied to a wider class of numbers than the rmethod of
Pythagoras;~/2 will merely serve as a convenient illustration of the method. The principle upon
which many proofs of irrationality rest is the following theorem.

Theorem. Let « be a real number. If there is an infinite sequence of fractions aln)/bin) in lowest
terms, with denominators b{1) < b(2) < .. < bin) < ..., such that bin)« — aln) tends to § as nin
creases, then w« is frrational.

Notice that the theorem embodies a rather sophisticated analytical principle, requiring the ex-
istence of an infinity of fractions with a certain property whereas the proof of Pythagoras is
perfectly “finite"".

To prove the theorem, suppose « = alb is rational and take a sequence of fractions a(n)/b(n) in
fowest terms with denominators b(1) < . <b(n} < .... Since the denominators b(n) increase,

" we can choose m so large that bim) > b. Now

aln) a a{n) _ abin) - bain)
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For n 2 m, this expression is non-zero because we have bin) > b and so alb = ain)ib{n). Thus the
numerator abin) - baln) is a non-zero integer and, in particular, lab(n) ba{n}l = 1. Hence
lov — alndbin)| = 1/bbin,
or }':1{;Iti;jly§:1g through by bin},
bl - aln)] 2 tb.

This holds for all n 2 m, and so b{n)x —ain) cannot tend to 0,1t can only tend 10 0 if « is irrational,
and the theorem follows.

Incidentally the converse of the theorem is also true, namely if « is irrational, then there always
exists a sequence of fractions satisfying the conditions of the theorem. Can you prove it?

What have we gained by our theorem? It tells us that in order 1o demonstrate the irrationality of
a number «, all we have to find is a sequence of fractions a(n)/b(n) which satisty the conditions of
the theorem. We shall construct such a sequence for o« = 2.

Consider the sequence uin) defined by the recursion

ulh) = 2uln -1} + uln-2) (n = 2) (1)

Such a sequence is uniquely determined provided that we specify the “initial values’ ul0) and u(t).
Take for instance u{®) = 0 and w1) == 1. Then u(2) - 2, ul3) - 5, ul4) - 12, and so on. We shall
show that uln)/uln - 1) tends to 11 2 and for this purpose, we shall solve the recursion explicitly.
Although this is not the simplest way 1o calculate the limit of un)iuln - 1), the explicit expression
will give us further useful information. 7

There is a general method for finding a formula for uln) when it satisfies a recursion of the type
{(1). Let us try 1o satisfy {1) by an expression of the shape

uin) = ch» {2}

where ¢ and A are non-zero numbers. We can indeed satisfy (1) by such an expression provided
that N is chosen appropriately. To determine this vaiue of A, we substitute (2) into (1), giving ch» =
Z2cNt b che 2, and after dividing through by ot 7, this is A = 201 1. So we obtain two
possible values for \; let us call them

A=1+ 2 and p =1 - (2.
It is now easy 1o check that for any given values of a and b
uln) = aN» + bpn (3

is a solution of (1). (Prove it.) Moreover, this is the general solution, for given the initial values w(0)
and u(t), we can always find a and b so that these initial values are given by (3), namely

w0} = a+ b, ull) = ax+ bp.
Solving for a and b, we obtain
a = (u{l) — @~ ), b - (WON — w1 ).
tn pasticular, it u(0) = D and u(l) = 1, wegeta = b = 1/22, and so the solution (3} becomes

uin) = A — w22 nh =0, 1,2, ...}
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This formula enables us to calculate the limit of uln)fuin - 1), Indeed,

uln) M e B S
uln - 1) An 1 pgn T— (M 1

Here, (u\" 7 = {1~ V2W(1 + ¢2)}n 1 tends to O as n increases. (Why?) Censequently, the terms
involving {u/\)* 1 disappear in the limit as n tends to infinity and we have

ulnMuln=1) = X =1 4 2 asn - oo,.

as required.
Set now a(n) = uln) and bin) = uln —T)forn = 1,2, 3, .... Then we have a sequence of frac-
tions a{n)/b(n) which tends to A = 1 1 V2. Mareover,

bimh - aln) = uln — 1\ -~ uln) = M7 — 1) w242
= (N = e 1122 = pno o= (1 - 2 0

Thus b{n)h - aln) tends to 0 and so we can apply our theorem to show that A = 1 + V2 is irra-
tional. Now if \/2 were rational, we would of course have 1+ /2 rational, contrary to what we
have just shown. So /2 is irrational. (Fanfare,) Alternatively, a(n) = uln) — uln—1) and b(n) =
u(n-1) yields a sequence of suitable fractions for $2.

There is a small but important point that we have overlooked in the previous paragraph. The
theorem requires that the fractions aln)/bin) be in their lowest terms, that is, uln) and uln-1)
should have no common divisor greater than 1. We shall prove this by induction on n. Clearly
w{0) = 0 and u(1) = 1 have no common divisor greater than 1. Suppose we have proved the
same for u{n —1) and u{n - 2) and fet d be the greatest common divisor of u{n) and u(n —1). Then d
is also a divisor of uln -~ 2) = uln) - 2uln - 1), from (1), so d divides both u{n - 1) and u{n — 2). By
the induction assumption, we get d = 1, as required.

You might think that this was a very devious and unnecessarily complicated way to prove such
a simple fact as the irrationality of V2. This may be true, but the merit of such a general “analytic”’
method is that it can often be applied to a much wider class of numbers than the somewhat
specific (though extremely elegant) method of Pythagoras.

Guite recently the French mathematician Apéry has proved the irrationality of the number §(3)
defined by the series

{3 =14+ 18+ 1127 + 164 + ... + 1/n® +

a problem that has puzzled mathematicians since the times of Euler (the use of the letter ¢ is tradi-
tional). The Swiss mathematician Leonhard Euler, one of the most famous men of science of the
18th century, proved that the number {(2} given by the series

F2 =14+ 18+ 19 +116 + ... + 1n? «+

is equal to 726 {where « is the well known ratio of the circumference and diameter of a circle) and

he found simiiar expressions for the sums ;
Continued on page 35

25



