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424. A triangle ABC is given in the x-y plane. Now, O is the origin, the point P moves along the
line x = 1 and the point Q is determined so that the triangles ABC and OPQ are similar (that is,
angle QOP = angle CAB and angle QPO = angle CBA). Describe the motion of Q as P moves.
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425. Show that 2 cos x+1 = 4 cos*’’2x~1. Find
lim (2 cos {x/2} — 12 cos (x/22) - 1) ... {2 cos (x/20) ~ 1).

n-- oo

426. Find all pairs {(m,n) of integers so that x? + mx + nand x? + nx + m both have integer
roots. {For example x2 + 5x + 6 = (x4 2}{x+3)and x2 + 6x + 5 = {x+1){x+5).}

427. The four aces, kings, queens and jacks are taken from a pack of cards and dealt to four
players. Thereupon, the bank pays $1 for every jack held, $3 for every queen, $5 for every king
and $7 for every ace. In how many ways can it happen that all four players receive equal
payments {namely $16)?

428. Let n be an integer whose last digit is 7. Show that sorne multiple of n has no digit equai to
zero.

SOLUTIONS TO PROBLEMS FROM VOLUME 14, NUMBER 3

393. Show that if n is any integer greater than 2, of the fractions 1/n, 2/n, 3/n, ..., (n —1)/n an
even number are in lowest terms.

Solution |. )

Suppose 0 < h < %2n. The fraction hin is in lowest terms if and only if (n—h)/n is in lowest
terms. (Why?) Thus the fractions in lowest terms can be “paired off”’, each one less than % being
paired with one greater than Y. (For example, if n = 8, then 1/8 is paired with 7/8 and 3/8 with
5/8.) Consequently, the number of the fractions 1/n, 2/n, . ., (n—1)n in lowest terms is even. The
argument breaks down if n = 2, since then the fraction 1/2 is in lowest terms and is left "un
paired”.
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Solution Il from Ross Baldick (Chatswood High School).

The problem is the same as finding the number of integers less than or equal to n which are
relatively prime to n; this number is denoted by ¢(n) and called Euler's function. If n has the prime
cht()lisation n - pigb...re, then we have the formula

(f‘)(n) (pﬂ E p'i ‘)(qh 'q“ ‘} o (y“ e T,‘

and it follows that ¢(n} is always even if n > 2.

394. Prove that, if a + b? - x? 4 y? - 1, thenax + by < 1.

Solution |.
2ax + 2by = a? + x2 - (a—-x)? 4+ b? + y? - b-yP = 2 f@a—-xy - b-yP < 2
since (a—x* 20 and (b—y)? 2 0. Soax + by < 1.

Solution 1l from Ross Baldick (Chatswood High School) and K. Svendsen (Busby High
School).

In view of the identity, sin?¢ + cos = 1, we may assume a = sinf#, b = cos #, x = sin ¢,y
= cos ¢. Then

ax + by = sinfsing + cosfcosd = coslf—¢) < 1.

395. A polygon is said to be triangulated when diagonals, no two of which cross, are drawn cut-

ting the polygon into triangles. A polygon other than a triangle can be triangulated in more than
- one way.

. . & ]

ta) - Show that a triangulated n-gon is always

cut into n— 2 triangles by n-—3 diagonals.

(b} Show that there are at least two vertices
of a triangulated polygon each of which lies in
& single triangle. A

Solution I.

A proof by mathematical induction can be given for both parts.

{a) The statement is trivial when n = 3. Assume it is true when n < k-1, that is every
triangulation of such an n-gon has n -3 diagonals and n - 2 triangles. Now consider one diagonal
in any triangulation of a k-gon. This divides the figure into an r-gon {with r = 3) and a
(k +2 —r)-gon. The remaining diagonals triangutate both of these. By the induction hypothesis, the
total number of triangles is r-2) + (k+2-r-2) = k -2 and the total number of diagonals is
14+ -3 + (k+2~r—3} = k3. This completes the proof.

{b) Again the statement is trivial when n = 3, but it is convenient to prove the slightly stronger
statement that, when n = 4, there are at least two non-adjacent vertices of the triangulated poly-

38



gon each of which-lies in a single triangle.

This assertion is readily checked when n = 4, for each of the two possible trlangulatlons
Assume it is true for all n < k-1 and consider a tnangulated k- -gon. As in (a), one diagonal, AB
say, of the triangulation divides the figure into two poygons, each of which is triangulated by the
remaining diagonals. By the induction hypothesis, in each of these two polygons there are two ver
tices each lying in a single triangle, and since they are non-adjacent, they are not at both ends of
the edge AB, that is at least one of them occurs at a vertex other than A or B. Thus there are at
least two non-adjacent vertices of the triangulated k-gon each in a single triangle. This completes
the proof.

Solution II from Ross Baldick (Chatswood High School).

Here is a nicer proof of (b). By (a), the triangulated n-gon has n sldes and n—2 tnangles So
there are at least two triangles in the triangulation, each of which contains two _SIdes of the n-gon.
In each case, the two sides in question are necessarily adjacent and no diagonal of t‘he, triangula-
tion can end at their common vertex, so this vertex lies in a single triangle. :

396. Find a 10 digit number whose first digit tells the number of zeros which appear in it, whose
second digit tells the number of ones, and so on; (thus the tenth digit tells the number of nines in
the number). Is there another such number?

Solution.
The only such number is 6210001000.
Let al0) a(1) a(2) ... a(9) be a number with the given properties. Then
a0} + all} + al2) + ... + al9) = 10 (1)
and 0.al0) + 1.a(1) + 2a(2) + ... + 9a(9 = 10. (2)

The first equation counts the number of digits in the number by adding the number of zeros, of
ones, and so on, and says that the sum of the digits is 10. The second equation adds the digits in
a different way by summing all the zeros, all the ones, and so on, and adding the totals. Subtract-
ing (2) from (1) gives : an st aldize
al0) = al2) + 2a(3) + ... + 8al9). = ' (3)
If al0) = k, say, then alk) = 1 and one term on the right side of (3} is (k — 1)alk). Hence we. must
have atk) = al2) = 1 and aj) = Oforj > 2andj # k. Now (3) reads

o k=1 4 0.4 04 it e Bhliedois coral

Consequently a(‘l) 2, al2) = alk) = 1 and, from (1), a(0) = _
Correct solutions were received from T. Abberton (St. Paul s College, Bellambi), K Svendqen

(Busby High School), Surinder Wadhwa (Ashfield Boys' High School) and Richard Wilson (The
King's School, Parramatta). :

397. The smallest square on a peg-board has unit area. The figure shows how to construct
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squares of area 1 and 5 using pegs and rub
per bands.

(a) - Show how to construct squares of areas ¥
8 and 10. ‘

(b)  Prove that it is not possible to construct

- a square of area 4n+ 3 where n is an integer. )

% o ° ° '

Solution from Ross Baldick {Chatswood High School} and Richard Wilson (The King's

School, Parramatta).

~(a) By Pythagoras’ theorem, the area A of the square in the figure is a?+ b2 We have A = § if
a=b=2andA =10ifa =3 b = 1.

(b)  The square of an even number is a multiple of 4 and the square of an odd number is one
more than a multiple of 4, so the remainder when a’*+b? is divided by 4 is 0 {when a and b are
both even), or 1 (when a is even and b is odd, or vice versa), or 2 {when a and b are both odd),
but is never 3.

A correct solution was also received from K. Svendsen (Busby High School) and partial solutions

were received from Jenniter Taylor (Woy Woy High School) and Surinder Wadhwa (Ashfield Boys’
High School).

398. Show that it is impossible to construct an equilateral triangle on the pegboard in question
397 using 3 pegs and a rubber band.

Solution I.
Suppose an equilateral triangle could be constructed; let A = (0,0), B = (a,b) and C = (h,k) be
the vertices of such a triangle of minimum size. Now a, b, h and k cannot all be even, since then

(0,0), (Y2a,%b), (2h,%k) would be a smaller equilateral triangle. Equating the lengths of the sides
-of triangle ABC gives

8>+ b? = h? + k2 = (a—h)? + (b k)2 {1}

We consider the remainders of these quantities on division by 4, as in the solution to problem 397,
if a and b are both odd, then h and k must both be odd, but now a-h and bk are both even,
so that (1) cannot hold. if just one of a and b is odd, then also just one of h and k is odd, so a- h
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and b - k are both odd or both even and again (1) is impossible. Finally if a and b are both even,
then so are h and k and this has already been ruled out by our choice of the triangle ABC.

Solution It from Ross Baldick (Chatswood High School).

Again suppose we have an equilateral triangle with vertices A = (0,0), B = {a,b) and C = (hk),
where a, b, h and k are integers. We may suppose the order of the points A, B, C round the
triangle is anticlockwise. Now, by a little bit of trigonometry, we find h = —Y%a— %b+/3 and k =

- ¥%2b + %2a+/3. Since at least one of a and b is non-zero, these equations imply that /3 is rational,
a well-known contradiction.

Partial solutions were received from K. Svendsen {Busby High School) and Richard Wilson (The

King's School, Parramatta).

399. Show how to construct an equilateral triangie by folding a single frectangular) sheet of
paper. No rulers, compasses or separate sheets for measuring are to be used.

Solution | from K. Svendsen (Busby High School).

Suppose we start with an a by b rectangular sheet of paper with a < b. Fold the paper as in-
dicated in the first figure to obtain an a by a square. Now, fold this square as shown in the second
figure. We get the line PQ by folding the square in half, then we get the line BR by bringing the
corner A to a point A’ on PQ. This makes BA" = BA = a and BQ = za, so A'BC is an
equilateral triangle.

Solution If from Ross Baldick (Chatswood High School).

First fold the paper into quarters as shown in the third figure. Then make a fold PR by bringing
the corner A to a point A’ on the %-fold at the other end. Do the same with D. The two folds PR
and PS are at 60° to each other, and PRS is an equilateral wiangle. {(Why?) This construction works
with normal sheets of paper, provided they are not too long and thin.
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400. Show that the diameter d of the inscrib B
ed circle of a right triangle of legs a, b and e
hypotenuse ¢ satisfies d = a + b - ¢,

e A A 2 =

Solution from K. Svendsen {Busby High School) and Richard Wilson {The King's School,
Parramatta),

et OL, OM and ON be the radii of the insciibed circle to the points of contact with the sides, as
showin in the figure, Since th

£5
VA

& at L, M and C are right angles and OL - OM, we see that
CM = %d. Hence BL = a— %d and AM = b % d. Now the right-
OAN have a commaon hypotenuse OA and corresponding equal sides

ON = OM, so they are congruent and AN = AM = b - % d. Similarly BN = BL = a- %d. So

]

CMOL is a square and CL
A

and

angied triangles OAM as

¢ =AB = AN + BN = {a— %d) + b~ %d) = a+b-d,
as required.

Correct solutions were also received from Ross Baidick {Chatswood Fiigh School) and Surinder
ihwa (Ashfield Boys’ High School).

401. Let AB and CD be parallel diameters of
two circles which touch at P. Show that the
lines BC and AD intersect at P,

Solution.
Let O and Q be the cenires of the circles and SPT be the common tangent at P. Since OPT and
QPT are both right angles, OPQ is a straight line. Draw AP and DP. Now
angle APT = % angle AOP = % angle DOP = angle DPS,
so APD is a straight line. Similarly, BPC is a straight line and the result follows.
Correct solutions were received from Ross Baldick (Chatswood High Schoolj and K. Svendsen
{(Busby High School).
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402. Consider 5 points in space such that each pair is not more than 1 cm apart. What is the
greatest number of pairs which can be exactly 1 ¢cm apart? Prove your answer. (if there are 4
points there can be as many as six pairs exactly 1 cm apart — take the four points at the vertices
of a regular tetrahedron).

Solution.

Of the 10 possible pairs of points, no more than 8 can be exactly 1 cm apart. To see this, start
by taking hree of the points A, B and C at the vertices of an equilateral triangle of side 1 cm. Sup-
pose P is equidistant from A, B and C and let M be the foot of the perpendicular from P to the
plane of A, B and C. By Pythagoras’ theorem,

PMZ + AM? = PM? + BM? = PM? + CM?,

s0 M s the circumcentre of the triangle ABC and, in fact, AM = 3/3 em. Conseguently, we get
P = /8/3 cm. Thus to achieve 9 distances equa! to 7 cm, we

.."c:'

endicularly above the circumcentie of triangle ARC and € at
VB3
= 1 emy, contrary (o the conditions of the problem. So we can only make the fiith point £ have

the same distance perpendicularly b “i ow the circumcentie. But the tenth distance DE is then 2.

distance 1 om away from 2 of the points A, B, C and U and this gives

; 8 distances equal to 1 cm.
\ correct solution was received from Ross Baldick {Chatswood High School) and an aimoest cor-
rect one from K. Svendsen (!}usb\/ High School).

*l;.:

403. Given any set of ten distinct positive integers each less than 100 show that thers
subsets of this set having no elements in common such that the sums of the numbe
subsets are equal.

are two

in the

o

ution from Ross Baldick {Chatswood High Schooi).

et § be a set of 10 distinct positive integers iess than 100. There are 210
choosing a subset T of S {or 1023 if we discount the empty subset, ha‘wzg no ¢
, nois that to choose T, we can taice cach of the 10 elements of § in turn and do one of 2
things with it, namely docide to put it in T, ar to leave it out of T, N(‘;w; each such subset T con-

tains at most 10 integers all less than 100, so the sum of its elements, sum {T) say, is always an in-

this

P



teger less than 1000. Since there are 1023 > 1000 possible subsets of S, we can find two
"bubsets A and B say, with sum (A) = sum (B). Let A" and B’ be obtained from A and B by omit-
ting any common elements. Then both sums are decreased by the same amount, namely by sum
(AMB), so we have sum (A") = sum (B"), as required.

This is a very pretty argument. It illustrates the use of the pigeon-hole principle, which may be
expressed as follows: If you try to put a flock of pigeons into a number of boxes and there are
more pigeons than boxes, then there will be at least one box containing more than one pigeon.
V'Thv; simple idea has some far-reaching applications.

A04.  The number 1234567 is not divisible by 11, but 3746512 is. How many different m ultiples of
»1! f‘an be obtained by appropriately ordering these digits?

Sqlu_tion from Richard Wilsen {The King’s School, Parramattal.
If abcdefg is divisible by 11, then

a-b+ec-d+e—-f+g = 11n (1)
say, using the well-known test for divisibility by 11. For this problem,
el a+b+c+d+e+f+g=28 (2)
Adding (1) and (2) gives 2(a+tc+e+g) = 284+ 11n. But 10 € a+c+e +g < 22, so we must have
n = 0 and

at+tc+e+g =>b+d+1f = 14,
There are four different ways of allocating the digits to satisfy these last two conditions, namely
1124447 =3+5+6, 1424546 =344+7, 14+344+6 = 2454 7,2+3+4+5 = 1+617.

Foi each of these, there are 41 x 31 = 144 ways of arranging the digits, so the total number of
different multiples of 11 that can be found is 4 x 144 = 576,

A correct solution was also received from Ross Baldick (Chatswood High School) and partial
solutions from K. Svendsen (Busby ngh School) and Jennifer Taylor (Woy Woy High School).

Solvers of earlier problems.

The following contributions were received too late for acknowledgement in the last issue:

H(‘s<; Baldick (Chatswood High School): solutions to problems 382 to 386 and 388 to 390, ali ex
B ellent; '
Hee C -han {Crows Nest Boys’ High School): a solution to problem 382 and a partial solution o pro-

blem 386;

Paul Rider {St. Leo’s College) a solution to problem 382
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