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MERCATOR, MAPS AND MATHEMATICS
John Macj*
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methods — for €xample “conic projection”, “Bonne’s projection’, “Lambert's Azimutha| Equal-area
Projection”, “Van Der Grinten Projection’’ and “Chamberlin Trimetric Projection” are some of the
descriptions appearing on maps | have at home,
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Mercator’s Projection; —— — .. . rhumb line, T~ — great circle
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The construction of Mercator's projection



from each other. This means that the scale we chose for equatorial distances is increasingly
distorted as we approach the poles. At latitude ¢, an easy calculation shows that the scale
distance between our two meridians is a factor of sec ¢ too large — distances along the parallel
are too big compared with the real distances corresponding to them on the earth’s surface. But
this distortion must apply to short distances in every direction about a point P on the paraliel,
because the angle preserving property of our map forces small triangles about P on the earth to
correspond to similar triangles about the image of P on our map. Hence aleng the meridian at P,
short scale distances| are also a factor of sec ¢ too large. This applies to each point of a given
meridian, and we can now work out where 1o place the point P’ on cur map corresponding to P,

Draw the meridian line OP’ through P’, with O on the equator. We need to know the scale
distance OP' in terms of our equatorial scale units. At Q, the distortion factor is sec O = 1. At O
{latitude «), the distortion factor is sec «. This means that the arc length on the meridian between
latitudes « and o + Aw, which is just RAq, where R is the radius of the earth, must correspond to
a scale distance Ay = K'sec « Aa about Q’, where K is the equatorial scale distance correspond-
ing to R. The approximate relation AylNa = K sec a leads to the exact relation

dy/de = K sec «,

hence, integrating with respect to « from O to ¢, we find

OP' = {* (dyldaddar = K {*sec « da.
0 0

This integral is fun to evaluate if you haven't seen it before. The neatest way to write the answer is

OP" = K log tan (% w + Y ¢),

and we can now draw on our map a line for each parallel of latitude. Notice that we can never
reach the North pole, and that our map will get bigger and bigger as latitude increases. (Greenland
always does look much bigger than Australial)

One of the properties of the map is that “small”’ areas preserve shape, so that the map is also a
useful and recognisable representation of the surface features around us, wherever we are {except
at the inaccessible poles). We could choose some other great circle (say O° longitude) as our base
line and then other areas of the earth become “inaccessible"”.

The paths of constant compass bearing on the earth’s surface are called rhumb lines or loxo-
dromes. They are not usually the shortest paths between two given points. Any two (non-
diametrically opposite) points on the surface determine a unique great circle, and the shortest path
between the two points is the smaller great circle arc joining them, This shortest path is clearly not
a straight line on Mercator’s map, and you might like to discover what curve corresponds to it.

Another problem regarding Mercator's map is that of measuring distance along the rhumb lines.
What is the formula, if any, for working out the real distance along the rhumb line joining the
places corresponding to two given points P’ and Q' on the map? How convenient is Mercator's
map for measuring distances?

Mercator's map-drawing method is usually called Mercator’s prajection. Another type of projec-
tion used for map-making is very like projecting an image on a screen. Imagine a light source at
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the centre of the earth (now suddenly transparent!) and the screen as a tangent plane touching the
- earth’s surface at a selected point P say. Rays of light passing through a point Q on the surface
strike the screen at a point Q', and in this way we obtain a map of the surface on the screen, This
map is again a “nice” map for an area about P, but we expect some distortion as we move away
from P. What properties would you expect such a map to have? For example, straight lines on the
map correspond to what kinds of curves on the earth’s surface? (A projection like this is called a
_ gnomonic projection -- why?)

Interrupted Sanson-Flamsteed projection




Another type of projection is axial projection. Imagine a light source running along the earth’s
polar axis, emitting light in horizontal directions only. As a screen, wrap a cylinder around the
garth, touching it along the equator. The light rays now map the earth’s surface onto the inside of
the cylinder between horizontal planes determined by the North and South poles. If we now cut
the cylinder along a generator, we can flatten it out and obtain another map of the earth. Whiat
properties will this have? (Here's one to think about: what is the relation between surface area on
the sarth and surface area on this map?)
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Simple cylindrical map of the world {axiai projection)

All maps of the earth that we use convey some kind of information about the earth that is in-
teresting and useful. No one would be terribly interested in a world map that rendered the world:
unrecognisable. In other words, certain features of the earth, considered important to us, are ex-
pected to be preserved in some recognisable way in a map. indeed, it often happens in
mathematics that we need to fepresent one system (the earth) by a more convenient system (a
plane map) so that the properties important for us are preserved. The best representation will de-
pend on just what properties of the system we want to investigate.

To finish, return to world maps. On the surface of the earth, distance between points is
measured as great circle distance. in the plane, distance is measured as ordinary euclidean straight
line distance. Can we construct a plane map of a small area R of the earth’s surface which is
distance-preserving, that is it has the property that we can always measure the distance between
any 2 points of R by measuring the ordinary distance hetween their image points on the map?
Natice that Mercator’s map certainly won't do. Any such map must map arcs of great circles onto
straight line segments, and must also preserve angles, The extra condition we seek is that its scale
remain constant over the entire map. Is such a map possible? ]



PRIME TIME

How fast can a computer run? Over recent years, considerable prestige has gone to the current
holder of the record for the world's largest prime and it seems that each new idea in the com-
puting field has cut its teeth on large prime nurnbers. As we explained in “The strange case of
Father Mersenne” (Parabola, Volume 15, Number 2), the best way to find a large prime is to test
the Mersenne numbers M(n) = 20 -1, by using an algorithm discovered by Lucas and Lehmer.
The time taken to test the number Min) on a given machine is roughly proportional to n®. So the
search for Mersenne primes provides quite a graphic measure of the development of computing
power. The following table is a list of the known Mersenne primes and the times taken by their
discoverers to check their primality.



n Min) Discoverer Year Computing time

1 2 3 Mersenne 1644

2 3 7 = &

& 5 31 i i

4 7 127 K3 i

5 13 8191 . 8

6 17 27 -1 & 5

7 19 2191 Euler 1750

8 31 2311 s g

9 61 261 1 Lucas 1876
10 89 283 —1 & . oy
11 107 2107 — 1 g sl
12 127 2127 1 i e
13 521 2521 — 1 Lehmer 1952 1 minute
14 607 20607 1 - iy 1 minute
15 1279 21219 1 H g 13% minutes
16 2203 22203 1 B i 1 hour
17 2281 22281 1 & 3 1 hour
18 3217 23217 _1q Riesel 1957 5% hours
19 4253 24253 _ 1 Hurwitz 1961 50 minutes
20 4423 24423 1 ‘ . ¥ 50 minutes
21 9689 29689 _ 1 Gillies 1963 1% hours
22 9941 2998 1 ¥ . 1% hours
23 11213 21213 & " 2% hours
24 19937 219937 _ 1 Tuckerman 1971 35 minutes
Z5 21701 221701 _ 4 Noll and Nickel 1978 8 hours
26 23209 223209 _ 1 Noli- 1979 8% hours
27 44497 244497 _ 4 Nelson and Slowinski 1979 8 minutes

Lehmer’s calculations were the first to use an electronic computer. His calculations were limited not
s much by computing time but by the size of the machine. In fact, when the prime testing algorithm
and the number to be tested were loaded into the machine, there was hardly any room left for the
calculations. It took great ingenuity in those days to do the most elementary calculations and to pre-
vent the computer from blowing valves right, left and centre. Let us compare the most recent prime
M{44497) with Lehmer's prime M(1279). The index is about 35 times larger, so Lehmer's time of 13 %
minutes for testing M{1279) extrapolates to 13% x (35)3 minutes (= 57 weeks) for M{44497) accord-
ing to the rough rule of thumb mentioned earlier. So the latest computer is about 72000 times faster
than the earliest machines. The prime M(44497) was discovered on a machine calted the Cray-1 which
employs rather refined parallel processing, so that it can perform many operations simuitaneousiy. This

makes it so complicated that only another computer is capable of feeding it. What are the prospects
for 19847



