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SOLUTIONS TO PROBLEMS FROM VOLUME 16, NUMBER 1
44‘"1.7 Prove that the number 1111.. .11, consisting of 91 ones, is a composite number.

Sdlution. -
‘One factorisation is 1111111 x 1000000100000010. . .10000011 where the second number has
13 ones, each two of which are separated by a block of 6 zeros. There is another similar factorisa-

tion in which the first factor is a block of 13 ones and the second has 7 ones separated by blocks
of 12 zeros.

‘Correct solutions were received from J. Cranford (Ndrth Sydney Boys High School), N. Brown
(Watson High School), K. Lim (St. Ignatius College), D. Everett (Kogarah High School).

442. Factorise the polynomial xX2 + x4 + 1 into factors of at most the second degree.
Solution.

X8 4+ x4 + 1.

X + 12 — x32 = (x4 + 1 + xx* + 1 - x3
{xz + 1) — x22 + 1?2 = (V3x)?] _

_ =02+ 1T+ xx*+ 1 — x% + 1 + /32 + 1 — /3x)

Correct solutions were received from R. Youhana (North Sydney Boys’ High Sch'oo,l) and K, ,Lirh
(St. Ignatius College). |
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443. None of the numbers a, b or ¢ is zero and each is a root of the equation
x3 — ax2 + bx — ¢ = 0. Find a, b and c.

Solution.
We must find non-zero a, b, ¢ satisfying simultaneously

0 =a®*—aa’”+ ba-c¢c=Dhba~-c (1

0 =b®-ab?>+ bb -c (2)
and 0=c¢c*—-ac? + bc - ¢ (3)
Substituting ¢ = ab from (1) into (2) and (3), and cancelling non-zero factors gives
0="5b—ab?+ b2-ab =1(b+ Nb - a (4)
Thereforeb + 1 =0, orb —a =20
and 0=ah?-ab+b-1=1{+MNHb-1 (5)

Therefore ah + 1 =0, orb -1 = 0.

Casel. b 4+ 1 =0anda’ + 1 = Oyields (abe) = a,-1,-Vor{-1,-11).
Casell, b + 1 =0andb - 1 = 0 yields no solution.
Case Hl.b — a = 0and a?b + 1 = Qyields {a,b,c) = {(-1,-1,1).
Case [V.b —a =0andb -1 = 0 yields {a,b,c) = (1,1,1).
Thus there are 3 real solutions (a,b,c} = {1,1,1); {-1,=11) or (1,~1,-1).
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{Case lil also yields the solution a = b = Q, ¢ = @? where g i_s ,'either complex cpbelroot of -
—1;i.e Yool + iy3}) :

Correct solutions were received from J. Taylor (Woy Woy H1gh School): and N. Brown (Watson‘
High School)

444. Prove that if the sum of the positive numbers a b and ¢ is.equal to 1, then
a=1 4+ b-1 ¥ g~V > 8. :

Solution.

L

bc + ca + ab _ {bc + ca + ab)la + b + ¢
E =

+ sincea + b +c¢c =1
abc abc

W | =

1
+ —=
c

alb? + ¢ + blc? + a?) + cla? + b2 + 3abe
abc

alb? — 2bc + ¢? + blc? — 2ac + a? + cl@® — 2ab | b?) + 9abc
abc

B alb — ¢)2 + blc — a)? + cla — b)? © 3
N abc :

2 9 since a,b,c > 0 and perfect squares are < 0.

Equality occurs only ifa = b = ¢ = 1/3.

445. A river 100m wide runs due east-west. Points A and B are on opposite sides of the river and
at respective distances of 200m and 100m from its banks. B is 400m further west than A. A road
and bridge joining A and B is to be constructed subject to the condition that the bridge must cross

the river perpendicularly. What is the shortest possible total length of road and bndge which’ Wl||
join the points? Prove your answer. ~
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Solution. , A
Let A’ be 100 metres due south of A. Let XY
represent any bridge position. Then since XY is
equal and- parellel to- A’A, XA'AY is a paraliel-

_ogram, and *YA = *XA’ \
The total road fength Y Q e

*BX + *YA = *BX + *XB’ > *BA’.
/ 300 m

P

Al

Hence the road length is kept to a minimum ‘by ‘
building the bridge at PQ, where BPA' is straight, X}~

~and the total length of bridge and road is then :
"PA 4+ *BA’ = 100m + \/(4002 + 300%m 400 m , Vv
: = 600m. ) : M

Correct solutions were received from D. Everett {Kogarah High School), K. Lim (St. Ignatius Col-
“legéd, N. Brown {Watson High School) and J. Crawford, R. Youhana, C. Ven, A. Jenkinson (North
Sydney Boys’ High School).

446. A rectangle is drawn so that its four vertices lie on the perimeter of a given acute-angled
triangle. Find the locus of the centre of the rectangle as it moves subject to these constraints.

Solution.

'N. Brown (Watson High School) submitted an excellent solution using only the easily proved
property that a median of a triangle bisects all '
line segments parallel to the base with end A
points on the other two sides; thus:-

Label. the triangle ABC and first consider all
rectangles like WXYZ with two vertices on BC
{see figure). Let AD be the perpendicular, and
AM the median, from A to BC. By the property
stated, since WX||BC, AM cuts WX at its mid
point P. Therefore the centre of the rectangle is
the mid point N of PQ where PQ is perpendicular
to ZY. Note PQ||AD. Again using the property, N
lies on the median NR of the triangle MDA.

Thus the desired locus consists of the three

line segment joining the mid points of the altitudes with the mid points of the corresponding sides
of the triangle. ‘
Comments: One can prove if desired that ‘these three line segments are concurrent (for example,
by applying Ceva's theorem to the triangle KLM). One further comment is that if the vertices of the
rectangle are permitted to lie on the sides of the triangle produced (rather than, as given, on the
petimeter of the triangIe)> the locus of its centre consists of the infinite straight lines RM, TK, SL.

Correct solution also received from K. Lim (St. Ignatius College).
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447. () i AB and CD are line segments of equal length ¢ which do not intersect, prove that at
least one of AC, AD, BC and BD has a length greater than /. ‘

(i) Let S be a set of n distinct points in the plane. Consider the %nin— 1) line segments con-
necting all possible pairs of points of S. Any one of the longest of these line segments is called a
diameter of S. There may be several diameters; for example, if S consists of the four points at the
vertices of a rectangle, both dlagonals are diameters. However by (i), any two dlameters must
have a point in common.

Prove that a set of n pomts has at most n diameters.

(i)} Show that for any n 2 3, there exists a set of n points having exactly n diameters.

Solution,

(i) Case 1. ABCD is a convex quadrilateral. Re-label the vertices if necessary so that of the four
angles 0,, tg, 0c, 0, subtended at a vertex by the opposite side of length {, the smallest of 0,.
Then in the triangle ACD, angle D > 6, > 0, (see figure 1). Therefore AC* > DC* = (.

Case 2. (i} ABCD is not convex. Re-label the vertices if necessary so that AB produced cuts CD, at
X say. One of the angles CXA and DXA is at least a right angle, thus it is the largest angle in the
triangles AXC or AXD respectively. Hence at least one of AC and AD exceeds AX in length, and
therefore certainly is longer than AB, ’ '

(i) Suppose there exists a set of n points having (n+1) dlameters There are 2n 3 2 points at
the ends of these (n+ 1) diameters; hence at least one of the n points, 0 say, is an end pomt of
three or more diameters OA, OA,, OA;, say. {See figure, Note that A; DA, < 607, since A; A*; < {)
Observe that A, cannot be the end point of another dlameter since it would be zmposs_rble for sueh
to intersect both OA; and OA,, as required by (i). Hence if the point A, and the line segmeht OA,- '
are deleted we are left with a set of n—1 points having n diameters. Repeating this argument we
would eventually reduce down to a set of 3 points having 4 diameters, an |mposmbnhty since there
are altogether only C3 3 line segments connecting the 3 points.

C Figwre 1
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(i) Let the triangle ABC be equilateral of side
length ¢, and let P,, Py, ..., P, 3 beany (n—3)
points on the arc BC of the circle centre A,
radius f. There are n diameters {AB, AC, BC, and
AP, v = 1,2, ..., n-3} and n points.

A correct solution was received from K. Lim
(St. Ignatius College).

448, Let S be the area of the parallelogram OABC. Prove that §° < (3./3/8) OAZ . OB? . ocz.

Solution.

The perpendicular distances between OA and BC is h = OB sin « = OC sin @ + B

S = OA.OB sin « = OA.OC sin (@ + B). Since
S = OC.OB sin g8 since OB sin is the perpen-

dicular distance between AB and OC. Therefore C
§3 = OA? 0B2 OC? sin « sin 8 sin @+ ). Itis S
thus sufficient to show that, for any two positive / o //’
angles whose sum is less than two right angles, / ' /
sin a sin 3 sin {a+8) < 3J318 [f// / 3

Using 2 sin 0 sin ¢ = cos @—¢) — cos 0+¢) O “”"‘ T Teterrrek-sedan gt g
we have
sin « sin 8 sin (o + G}

= % sin a (cos o — cos (20 + o))

< % sin alcos a + 1}, since cos (23 +a) 2

The maximum of Fla) = % sin alcos a+1) in 0 € a < 7 can be found by calculus. F'la) =
% cos alcos a+1) — % sinfa = % (2 cos?a + cosa — 1) = % (2cos a — 1) {cos « + 1); so

that F (o) vanishes at cos o =Y, since « = w3, and at cos «

Flr) = 0 and Fla) > 0 for 0 < « < w the stationary point at a
its value is F{m/3) = % sin w/3 (cos #/3 + 1) = %

M2 + 1) =

1, since « = . Since F{0) =

3/3/8.

#/3 must be a maximum, and

449. Prove that every regular polygon having an even number of sides can be dissected into
lozénges. (A lozenge, or rhombus, is a quadrilateral whose four sides are all of the same length.)
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Solution.

Both K. Lim (St. Ignatius College) and N.
Brown (Watson High School) submitted the
following argument which | have pleasure in
substituting for my own rather more complicated
solution. | have not used the exact wording of
_ either.

Let Py ... PiPoi oo P, be any convex
polygon having all 2n sides of equal length, ¢,
whose opposite sides are parallel eg. P,P, ||
P.P., €tc.

Construct line segments P, Q,, P3Qy, .... Poy Q. all of length ¢ and parallel to P, Py, . Join-
P Q. QQ3, ..., Q,, Q,, , Q. P,y (see figure 1). Cleatly the original polygon has’ been
dissected into rhombuses P, P,Q,P,, P,P;Q,0Q,, ..., Pot PP, 1Q,_y, together with a polygon
QQ3, ..., Oy PoyyPoya, ..\, P of 2n— 2 sides. 5y - i 18 sd val

Since this polygon has the same properties as the one we started with (all sides of length ¢ op-
posite sides parallel; e.g. P,, Q, || Py Py Il Poyy Py, 5, @and convex as its interior angles being equal
to or less than a corresponding interior angle of the original, cannot be re-intrant) the same pro-
cedure can be repeated, and as the number of sides of the leftover pie"ces' always decreases by
two, eventually a dissection into rhombuses results. Fo .8

450. Let p and q be integers such that

b 1 1 1 |
— — o B = + oy mamar
- 1 5 + 3 +
Prove that p is divisible by 1979. ;
Solution.
1-2 1 1-2 125 1
2_21+T+§“+"4—-+ +:"‘§'1""'+1319
il onedy 1 et 2 iz 32 L1319 L s
= — e e e R & i 1 + .,.._........) = E 1In g E 1/
WG g oo s b = em " 1318 Ko it Al
Lteviad ot iy snal
~ 660 = 661 1318 © 1319
1 1 1 1 iy 1 1 g
=% LI TR e I PN S UL N (I NI S
‘%60 " T30 t 'eei tae t o I 1979 -k 989 ' 990
» 989 :
1978 1922 1998 1 o7 B 11(k(1979 — K))

= 8601319 T 6611318 T - * 989990
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’ 989
Now L 1/(k{1979 —k)} = H/K where K = 660.661. .... 1319 and H is some integer, so- that
.-k 660

' ilg = 1979 (HIK) or pK = 1979.H.q. Since 1979 is a prime number which does not divide K we
must have p a multiple of 1979. :
A correct solution was received from N. Brown (Watson High School).

A prlsm with pentagons A(1) A(2) A(3) Al4) A(5) and B(1) B(2) B(3) B(4) B(5) as top and bot- .
tom faces is given. Each side of the two pentagons and each of the line segments Afi} B(j), for all
ij = 1,2 3, 4,5, is coloured either red or green. Every triangle whose vertices are vertices of the
'pnsm and whose sides have all been coloured has two sides of different colours. Show that aII ten

“sides of the top and bottom faces of the prism are the same colour.

Solutlon
We shall show first that any two neighbouring edges at the top (or the bottom) must have the
same. colour, Let PP, P; be three netghbourmg
vertices. Of the five lines from the middle one, P, 1 f _
to the vertices at the opposnte end of the prism ' Q
these must be at least 3 of one colour (say, ' . P
green) and therefore ‘two neighbouring ones, 2 st
P,Q,, P,Q, both green, Then Q; Q, must be red. PZ (o 0

if P,P, were green then from AP,P,Q, we :
would have P,Q, red, and from AP,P,Q, we Q,
would have P, Q, red. But then AP, Q,Q,would '

have all sides red, which is forbidden. Hence g
P,P, must be red and similarly P,P; must be P3- _

" the same colour. Since we have now proved that

_any’ two neighbouring edges at either end must have the same colour, and Q,Q,, P,P,, P,P; are
red, it follows that all edges at both pentagonal ends must be red.

452. Given a plane, a point P in the plane and a point Q not in the plane, find all pbints R in the
plane such that the ratio (QP + PR)/QR is a maximum.

~ Solution.

In Fsgure 1 over page, M is the foot .of the perpendlcular from Q to the given plane, and R;, R
are the two points in the plane equ1d|stant from M, R lying on PM produced.
. Then QR* = QR*, (from congruent right angled triangles QMR and QMR, ) and PR* = PM* +
= MR*, > PR*, . Therefore (PQ* + PR*)}/QR* > (PQ* + PQ*,)/QR*,. Thus the desired point R
rust lie on the line PM produced.
_In Figure 2 over page, MP is produced to X so that PX* = PQ™. If R is any point on PM produced,

(PQ* + PR*)/QR* = XR*/QR* = sin £XQR-/ sin LOXP

"1"hé maximum of value of this is 1/sin ZQXP, achieved when £XQR = 90°, i.e. when the semi-
circle on diameter XR passes through Q. Then, since PQ* = PX*, P is the centre of the semicircle
s PR* = PQ*. Hence R must be the point on PM produced such that PR* = PQ*.
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453. Find all real numbers a for whwh there exist non-negative real numbers x(1) :x(2), x(3), x(4)
and x(b) satisfying the equations
5 5 T T "6 U
L kxlk) =a X klk = a2 L kbxlk) = a3
k=1 ek o | Tk = -
Solution. : ; ; p
Let x{(1), x(2), x(3) x(4), x(5) be non- negatwe numbers satlsfymg the given equations. Then

5 5 . - 7 . «
(R ixin g L B i) = aa® = @2 = (© K xi)®
i=1 s

=1 SVt k=1-

Muitiplying out and collecting terms yields

Lo ij® ~ 2% + i5)) x{i} x() =0
1<igj<b : ,

e, L2 — 22 xli) x(j) =
1<igj<5
Since all terms on the L.H.S. are > 0, for eduality we must have every term equal to 0. Hence at
most one of x(1), x(2), x(3), x(4), x(5) is different from 0. If every x(k) = 0,a = 0. If x(i) # 0, the
equations become ix({i) = a, i*{i) = a2 and 5x(i) = a® which have the solution x{i) = i when g =
i2. Thus only six values of a yleld non negative solutions of the equations. viz. a = 0 8 = ‘52
= 3% a =4anda = b2 N S

454. let A and E be opposite vertices of a regular octagon. A frog starts jumping at vertex A.
From any vertex of the octagon except E, it may jump to either of the two adjacent vertices. When
it reaches vertex E, the frog stops and stays there. Let aln) be the number of distinct paths of ex-
actly n jumps ending at E.
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Prove that al2n—1) = 0 and al2n) = {2+ 20" ' — 2-y2 '} /y2,forn = 1,2, 3,. .. .
(A path of n jumps is a sequence of vertices (P(0), P(1), ..., P(n}) such that
(i) PO} == A, PIn) = E,
(i) P(i) # Efor 0 <i<n-1,and
iii) P(i) and Pli + 1) are adjacent for 0 < i< n-1)

" Solution.
 Let Aln), Bin), Cin), D(n), E(n), F(n), Gin) and Hin) represent the number of different paths of n
: jumps starting at A and ending at the corresponding vertex. Thus E(n} is the same as a{n) in the
~ statement of the problem; E(1} = E(2) = E{3) = 0 since the vertex cannot be reached at all in
fewer than 4 jumps E{4) = 2, the two paths beingA — B - C - D - EandA - H -G - F — E.
“Note that, by symmetry about AE, Bln) = Hin), Cin) = Gin) and Din) = Fin). The last jump in a
path ending at A has come from B or H,

- Therefore Aln+1) = B(n) + H(n) = 2Bi(n) _ ‘ i
' Similarly ‘Bin+1) = Ain) + Cin) (2)
Rl Cin+1) = Bl + Din) (3)
e, Din+1) = Cin) (the frog never returns from E to d) (4)
and. . Eln+1) = DIn) + Fin) = 2Din) © (5)

T he‘;nse. equations (1), (2), (3), (4) and () apply for all n > 0.
- Efiminating A(n), B{n), C{n) and Din) yields without much difficulty

Eln+4) = 4En+2) + 2En) = 0 foralkn > 0 ‘ {6)

'.Tbigie-t'her ",with E(1) = E(2) = E{3) = 0, E = 1, this recurrence relation determines E(n) for all
positive n. Since E(1) = E(3) = O the equation gives E(6) = 0 then E(7) = 0; in fact E2k—1) = 0
- ‘for every natural number k. Again E(6) = 4E(2) = 8, E{8) = 4E(6) + 2E(4) = 36 efc.

“SetKi2n) = (2 + v2P-t ~ (2 — y2h-1)V2, forn =1,23,....

Note that K(2)= [2 + v2I0 — (2 — v200}/y2 = O E =(2)
and - K) = 12 + 20— 2 — V21 )IV2 = 2 = E), 7)

Also 4K(2n + 2) = 2K(2n) = @[ +y200 — (2—y20} — 202+ Y2t — (2— 20 1)2
S (2420 G242 - 22 @22 — V2
(24203 (6+4v2) — (2—y2m (6—4y2)/y/2
2420 (2422 — -2 22212
= (242001 — (2-y2n0Tly2 = K(2n+4)
Therefore K(2n+4) = 4K(m +2) + 2K(2n) = 0. (8)

It

i

Nl

Thus K(2n) satisfies the same recurrence relation as E(2n) (cf (8) and (6)) as well as the same
initial v_alues {7). Hence E{2n) = K(2n) for all n > 0.
_A correct solution was received from N. Brown (Watson .High School).
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