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PYTHAGOREAN TRIANGLES

We received an interesting letter from one of our readers, $.J. Cohen, who
has found a way of generating sequences of Pythagorean triangles by means of
certain irrational square roots.
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For example, V2 1leads to an infinite family of Pythagorean triangles in

which the two sides a and b differ by exactly 1. Put a = /7. Then
a0 - 1?2 =« (@ - 1)(a + 1) =1, s0
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We can substitute for o - 1 on the right using this equation to get
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and then substitute for a - 1 again to get
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and so on ad infinitum. This yields the continued fraction
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If we truncate this continued fraction after n layeré. we obtain an approximat-

ion to a - 1. The first five approximations are
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In general, {f % s the n-th approximation, then we get the (n + 1l)-st
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vhich makes it easy to calculate the approximations as far as may be required.
Now, we can form Pythagorean triangles by taking
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The first few are given in the table below,

n Py 9, . a b . c

1 1 2 4 3 5
2 2 5 20 21 29

3 5 12 120 119 169
4 12 29 - 696 697 985
5 29 70 4060 4059 5741
6 70 169 236@0 23661 33461 .

As asserted, the sides & and b satisfy a - b = ¢ 1.

In the same way starting with V5, we get the contipnued fraction
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and this leads to a family of Pythagorean triangles with 2a - b = 2 1., The
first one is the famililar triangle with a =8, b =15 and ¢ = 17.

We can also find a continued fraction expansion for 3 with only a small .
change 4n the scheme above. If B = v/3, then B?® - 2% = (B~ 2)(f + 2) = -~ 1, so0
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and by repeated substitution, this gives
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If we call the n~th approximatien -~ E‘;' then the (n + 1l)-st one is
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The Pythagorean triangles with a = anqn, b = q; e~ and ¢ = q; + p:

satisty ¢ = 2a + 1,



Mr. Cohen leaves 1t as a challenge to readers to find the properties of
the Pythagorean triangles arising from /t7 +1 and /E!—:TT. Can you deduce
from which irrational square root the Pythagorean triangle with a = 420,
b= 1189 and c¢ = 1261 1s derived?

Mr. Cohen's letter touches on many interesting matters. The following

comments may help you to see some of the connections between them.

It has been known since Pythagoras himself that V2 1s irrational, To
the Pythagoreans, this was a terrible shock. It implies that in a 45> right
triangle (with a = b), the hypotenuse and the side are incommensurable (since
% = /2 18 irrational). This largely undermined the Pythagorean philosophy
which tried to explain the world by means of positive integers. However, even
1f we cannot find a 45° right triangle with integer sides, we can still try to
approximate it by looking for a right triangle with integer sides having
b = a2z 1l. Now all Pythagorean triangles whose sides a,b,c have no common
factors are given by

a=2pq, b=gq®- p?, c=gq®+p’
The condition b = a t 1 becomes q? - p? = 2pq ¢t 1, that is
(p+ @)% -~ 2q2 = ¢ 1.
1f we can find positive integers p and q satisfying this last equatiomn, we
will get the near-isosceles right triangles that we want. More generally to
produce a Pythagorean triangle in which b = ta 2 1, we need to find positive
integers p and q satisfyilng
(p+td? - (17 + g* = ¢t 1.

The equation
x? - Ny? = 21,
with N > 1 and not a square, 1s usually called Pell's equation. Thig is not
a particularly useful name because, apparently, Pell had nothing to do with the
equation. Some people are just lucky. The solutions of Pell’s equation are
intimately related to the rational approximations to VN. Indeed, the equation
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and this is very small if y 1is large. For example, the large solution

702262 - 3.40545% = 1
for N =3 glves



70226
40545

which agrees with /5 to ten decimal spaces. By factoring the numerator and

= 1.7320508077 ...

denominator of this fractiom,
70226 _ 26 31 13
40545 15 51 53 *

wve can obtain convenient gear ratios to approximate V3
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Let us now return to the particular equation
2 (e + 1)y? = 2 1.
There is one obvious solution, namely X =t ¥y = 1. From this, we can

construct infinitely many solutions by means of

¥p>Yn
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Fox example, xé + y2/21“$ﬂf = xi +(t? + 1)yi + 2x1yllfff:_f - (262 + 1) + 2¢/t% + 1,

8o X, = 2t? +1, Yy ™ 2t which satisfy x; - (t* + l)yi - 1. You can show

easily by induction that x - (% + 1)y = (- 1)®.  In fact, this prescriptiom
gives all the solutions in positive integers and the same idea solves the general
Pell equation x? - Ny? =21, To make the calculations easier, we canm use a

recurrence for. X and yn. Note that
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For 1aterlreference, note that LI 5 ™ Y To velate this to the

triangle equation (p +-§q)2 w (t? +1)g? =t 1, ve take x=p + tq, Y= q,
that is q=y, p=K=tYy. Thus we cah find infinitely many solutions Py,

from the recurrence
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In particular, if t = 1, the recurrence becomes Pt = Qe " 2qn + Po
which 18 exactly the same as the recurrence obtained from the continued fraction

for V2 - 1. What happens when you start with /5, or /Tﬁ, as suggested in

Mr. Cohen's letter?

We managed to avoid ceoatinued fractions in this analysis because we were
able to find a small solution of the equation x? - (t? + 1y? = -1 by
inspection. However, this {s not always so easy. For example, the smallest
solution of x? - 6ly2 =1 is x = 1766319049, y = 226153980. Obstinate
cases like this clearly need a better strategy than trial and error. We have

already remarked that if x?

-~ Ny? = £ 1, then % is a good rational approxima-
tion to VN. We can use this fact in reverse. First, find the continued
fraction for /N and then truncate it to get successive rational approximations

% for VN. We hope to find one of these approximations which satisfies

p2 - Nq2 = % 1. In fact, all the solutions of Pell's equation can be found in
this way, By way of illustration, let us find some integer solutions of the
equation x? - 7y? = 1. We need the continued fraction expansion for 7.
First write
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Here 2 1is the largest integer less than /7, so the remainder V7 - 2 is less
than 1 and its reciprocal El is greater than 1. We repeat this step and
find the integer part of El'
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Note how rationalising the denominator keeps the working simple. Again,
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and so on. But, if we are observant, we observe that ﬁsi- £1, 80 the
continued fraction 1s periodic. Thus
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The successivé approximations to 7 are
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However, such calculations become a 1ittle tedious after a while, so let us think
a little harder. The n-th approximation looks like
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After some time, we hit upon the recurrence
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It ie easy to check this for n = 2, because
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To prove our recurrence in gemeral, we shall use induction. So suppose everything
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works for n =2, 3, 4, ..., k. To find k+1. we write it, in a slightly tricky
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that 1s, E———- is the k-th approximation to the continued fraction with entries
k+1
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continued fraction agree with those of our old continued fraction since the
entries are the same up to & 1" But we can use our induction hypothesis to

find the k-th approximation to the new continued fraction, so we find
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For the last step, we have used the induction hypothesis again. Thus
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completing our proof by induction. The calculations for +7 are conveniently

done in a table

‘

0 0 1 2 3 4 3 6 7 8 9 10 1
8 AR | i | 4 1 1 1 4 1 1 1
P, 2 3 S 8 37 45 82 127 590 717 1307 2024
q, 11 2 3 W 17 31 48 223 281 504 785
p: - 7q: -3 2 -3 1 -3 2 -3 1 -3 2 -3 1

Observe that the last row is also periodic and every fourth entry yields a solut-
ion to the equation x* - 7y = 1.  The general solution in positive integers
could also be obtained from the first solution X = 8, v, = 3, by

x +y /7= B+3/D" n=1,2,3, ... .

Try applying all this continued fraction machinery to v2, /5, /i0, and
then to /t? + 1.

What do the continued fractions have in common?

Are there any other irrational square roots with the same property?

What 18 the continued fraction expansion for /31

Our machine produces "regular simple continued fractions”, that is
continued fractions in which the entries are ell positive integers. Can you
relate the regular simple continued fraction for 3 to the continued fraction
in Mr. Cohen's letter? '

What about V8, /15, ... ?

What is the pattern?
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