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Digram 2:
Euler's half-board solution.
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De Molvre's solution yields an even smaller number of solution but when
drawn, de Moivre's solution is visually pleasing. This method involves division
of the'board into comcentric “rings", ecach two squares deep. The knight is
placed in the outermost ring and moves around that ring always in the same direc~
tion and filling all the squarves of that ring, going into the next ring only when

absolutely necessary. The innermost cells are easy to fill. (See Diagram 3.)

Roget divided the board into quarters (4 x 4 squares) and constructed re-
entrant tours - in each guarter board. if we name the four different tours a, b,

¢, or d, the 64 of the board can be classified either a, b, ¢, or d and a tour

Diagrem 3:
A "de Moivre's solution”.
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Diagram 4:
Roget's four quarter board tours.

constructed. The completed tour 1s shown in diagram 6. Starting in the cell
marked *#, the knight first covers all the "b" cells, then tle "d" cells, followed
by the "a" and the "¢" cells,

S8ince the number of knight's tours on the B x 8 board iz liwmited = the

number is less then 168063 {approximately 1047), we can experiment with boards

of other dimensiocns.
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Diagrams § ond 62

Construction of Roget's tour in quarter boards.



In diagram 7, de Moivre's method is applied to a 25 x 25 board. The con~-

centric rings are much morve noticeable than on the 8 % 8 board,
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Diagron 7:

de Moivre's method applied to a4 25 = 25 hoard.

Diagram 8 shows a very interesting kitight'e tour. When the moves have been
nunbered, it forms a magic square. Each row, coluan and main diagonal has a con-

stant sum of 2,056¢
Jaenisch's tour on @ 8 x B board is semi-magic (see dizgram 9). Ae yet, nc
fully magic 8 x 8 tour has been found. In Jaenisch's solutions only the rows and

columns (not the diagonals) have the required constant of 260,

When experimenting with knight's tours on small rectangular boards, it should

be noted that
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A4 fully magic re-entrant 16 x 16 knight'e tour.
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) Diagram 8: Diagram- 10:
Jaenisch's semi-magic re-entrant Tour on an irregular board.
aolution,
(a) 4if one dimension ig less than 3, no tour is possible; . :
(b) 4if one dimension is 3, the other must be 2z 7. If the second dimension ia
even and z 10, re-entrant solutions existj
(¢} 1if one dimension is 4, no re-entrant solutions exist;
(d) tours are fmpossible on a 4 X 4 boards
(e) 1f one dimension 18 5, the other must be 2 5. 1If the second dimension 1s
even, re-entrant solutions exist;
() 1if one dimension is 6, the other must be 2 5, Bolutions will be re-entranty
(g) 41f one dimensicn is =z 7, a tour can always be found.

Yhy

board solutions or impose other restrictions such as making

Perhaps you may llke to try your hand at constructlng some knight's tours.

not try some irregular shapes (see diagram 10)? Or try to coastruct half-
a tour re-entrant or

semi-maglc? Or even a magic tour!
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EDITOR'S COMMENT: Kieran Lim is a first year University student now, he was one
of our most prolific problem solvers amd conmtributors. We would like to thank
him for his continued interest.

The picture shows a2 3 x 4
"chessboard" with three white

knights at one end and three
black knights at the other

. L
lf-v-nm- - b -

.;3 -y end. The problem is to
‘% . 7N interchange the white
‘§ 7 'S knights with the
/ §§5 7 N A Y/ black knights.
O ? ) The knights
S ~—— .S move in the
A © usual manner.
1t is not
necessary to move white and black alternatively. Can you find a sclution useing

no more than 17 moves?

(From the "Mathematical Digest".)
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