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HOW LONG IS THE COAST OF AUSTRALIA ?

Suppose that our Government has decided to improve the capabilities of the
Royal Australilan Navy, It has resolved to buy one new destroyer for each 1000 km
of the Australian coast-line. The only problem left for the Navy is to measure
the length of the coast-line.

Method 0. Buy a map of Australia, cut along the line separating the blue
bit from the green bit and measure the coast-line with a tape measure. (This
method goes against the great Australian tradition established by such great
Australian men as Ludwig van Leichhardt, the ill-fated Burke N. Wills and Captain
Mathews Flinders, who at least had the good sense to go by sea. We are appalled
that you would even consider such a solution. Anyway, the map we bought was
dravn by the Army and obviously unreliable.) Besides that, the actual coast will
be much longer than our tape measure can measure; think of all those lovely little

bays round Sydney Harbourl

Method 1. Take a handy straight bit of wood of length n and use it to
mark segments of length n round the coast so that each new step starts where
the previous step leave off. The number of steps multiplied by n gives an
approximate length L(n) for the coast-line. If we make the length 1n smaller
and smaller and repeat the operation, we expect this L(n) to approach a
well-defined value which we can call the true length of the coast-line. Figure 1
shows how we can use this procedure to measure the circumference of a circle of
radius 5 X 103m. One step of length 1 turns the radius through an angle 6°
given by sin 40 = n x 10_4 and the number of steps needed to turn the radius
through 360° and bring us back to our starting point is 360/6. So L(n) = 360n/9.
As you can see, L{n) converges very rapidly to m X 104. Indeed,
L(n) = 360n/6 = 360 x 10"
degrees, sin 6 = w6/180, We can use this approximation when n 1s small and
we find

sin %0/6. Now, if 6 d1is a small angle measured in

m{20) 1 _ 4
166 g 10,

This 1dea 1s the basis of Archimedes' method for determining . (See Parabola,

L(n) = 360 x 104 X

Volume 15, Number 2.) Measurements of the Australian coast have been made for

various values of n and L(n) does not seem to stabilise. Indeed, L(n) appears



n L(n)
5 x 107 3 x 10°
4 x 107 3.05 x 10°
3 x 107 3.09 x 10%
2 x 10° 3.12 x 10°
10° 3.14 x 10%
10? 3.14 x 10°
10 3.14 x 10°

Figure 1

to increase without limit as 1n is made smaller_and smaller. The behaviour of

L{n) for the circle and for our coast-line is shown in Figure 2.

Here, to see the pattern more clearly, we plotted the data on log-log écales,
which is a8 common device to change awkward curves on ordinary graph paper into
straight lines on log-log paper. Our data for the coast-line, represented by

the straight line in Figure 2 was obtained from actual measuremeunts.
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Method 2. Imagine a man walking round the coast, following whatever route
takes his fancy, but always staying within a prescribed distance n of the
coast-1line. The experiment can be repeated with smaller and smaller values of
N to force our walker to follow finer and finer details in the coast~line. This
seems much the same as method 1, but there is a parodox lurking around the corner.
Suppose the walker insists on walking in a north-south or east-west direction and

consider & hypothetical straight coast-line running in a north-easterly direction.



Figure 3 shows the walker's path as n 1is halved over and over again. If the

Figure 3

piece of coast-line is the diagonal of a square of side 100m, then we know that
its true length is 100V2m, However, in each of the diagrams, the walker goes
altogether 100m north and 100m east, so in every case the "approximate length"
measured is 200m. Notwithstanding all appearances to the contrary, the path
formed by the steps does not approach the diagonal line. Are you still convinced
that the polygons in figure 1 must give the correct value for the circumference

of the circle? To avoid the difficulty, we have to take away some of the freedom
of the troublesome walker who began this method. We shall require that he takes
the shortest possible path which always stays within the prescribed distance n

of the coast-line. The procedure now gives the correct length for simple curves
such as the straight line and the circle and it produces the same results as

method 1 in more complicated cases.

Method 3. Suppose we phone up NASA and persuade them to use one of their
flying saucers to take a slightiy outhof—focus'picture<xfour coast-line. This

will transform every point of the coast into a circular blotch of radius n,

"Minkowsky Sausage"

Figure 4



forming a kind of sausage of width 2n which covers the coast-line. We then
measure the area of the sausage and divide by 2n to get an estimate of the
length of the coast-line. For example, for a straight-line coast, the sausage

is a rectangle of width 2n and its area divided by 2n is the length of the
line. For an actual coast-line, the sausage'smooths out the wiggles whose scale
is small compared to n, just as in methods 1 and 2. As n decreases, the
sausage has to slink round more and more bays and headlands and, again, the
estimated length becomes larger and larger, apparently without bound. This

trend has been observed for a number of rugged coast-lines and cannot be explained

away by coffee stains on the chart table or too much splice on the mainbrace.
Now let us examine the results of all this methodology In more detail.

We have observed, to our amazement, that the data for the Australian coast
fall on a straight line of negative slope. In fact, any set of data can be made
to fallon a straight line in order to make it look more scientific., That is why
graph paper was invented. None of this, of course, should detract from the
extremely impressive straight line in figure 2. A little figuring gives its
equation, namely log10 L(n) = 4.4 - 0.14 1og10n, or after exﬁonentiating,

L{n) = 25,000 n—0.14. This means that, at the scale-length n, our coast-line
is approximated by a polygon with 25,000 n—l'14 sides, each of length n,
giving the estimate 25-000 nl_l'l4 for the total length. How can we understand

the funny numbers in the formula? Let us remind ourselves first that to measure
the length of a straight line of length 25,000m, say, with a short ruler of
length n, we divide it into 25,000 n—l segments each of length n and then
simply add the lengths of the segments to get the total length

25,000 n_ln = 25,000m. To measure the area of a square of side 158m, say,

we can pave the area with lots of little squares of side 1, raise n to the
power 2 +to get the area of each little square, and then add the areas together.
Since there are (158 n—l)2 &7 25,000 n_z

25,000 n_2n2 = 25,000 sq.m. In the first case, we are measuring a length which

‘little squares, the total area is

has dimension 1; in the second case, we are measuring an area which has dimension
2. In both cases, our final measure i1s Independent of n and this 1s what makes
it useful. To measure our coast-line in a similar way, we can approximate it by
small segments of length n, raise the length of each segment to the power 1.14

and add them together., Since there are 25,000 nwl'lh segments, we get the

measure 25,000 n_1'14n1'14

= 25,000 and again this is independent of n. We
might say that our coast-line has dimension 1.14 and that its 1.1l4-dimensional

weasure is 25,000.



All this 1s very strange. How can a line have a dimension bigger than 17
And how can a dimension possibly be a fraction? It becomes a little more
acceptable, perhaps, when we see that curves with these peculiar properties were
considered by a number of highly respectable mathematicians around 1900. These
arose in attempts to clarify the intﬁitive ideas about curves and surfaces which
everyone understood but which no-one could define satisfactorily. It is strange,
too, that these products of a debate in the foundations of the caleulus should
find an application to the real world, but that seems to be the way in which
mathematics work.,

Our first example of a funny curve 1s the snow-flake curve given by

Helge von Koch in 1904. We start with an equilateral triangle, as in figure 5.

Figure §

On the middle third of each side, we construct an equilateral triangle, giving
the star of David, Then the middle third of each side of the star we construct
an equilateral trianlge and so on, ad infinitum. This sequence of curves
converges to a limit which 1s illustrated in figure 6. You can imagine that the

stages in the construction of the snow-flake curve show the detail which becomes

eI

Figure 6



visible if we examine the curve at finer and finer resolution. In the same way

if we look at a piece of coast-line at a scale of 1/100,000 we may see just a
smooth bay. At a scale of 1/10,000 innumerable sub-bays become visible. At a
scale of 1/1,000, sub-sub-bays appear, and so on. At each stage in the construc-
tion of the snow-flake, the total length 1is increased by a factor of 4/3, Thus,
just like a coast-line, the snow-flake curve has infinite length., The analogy
extends further, as we shall see by applying method 1 to measure the snow-flake

at various scales, Suppose the construction begins, as in figure 5, with an
equilateral triangle of side 1. If we approximate the snow-flake using a yardstick
of length 1, we get the first figure in figure 5, so L(1l) = 3. If we approximate
the snow-flake using a yardstick of length 1/3, we get the middle figure in figufe
5, so L(3/4) = 4. The approximation with a yardstick of length 1/9 1s the
third figure in figure 5, so L(1/9) = 16/3. Continuing in this way we get -
L(B-k) = 3(4/3)k. Indeed, at the scale n = 3_k, the approximate snow-flake
consists of 3 Xx 4k segments, each of length 3—k, Can we find a "dimension"

in which the measure of the approximate snow-flake comes out independent of k?
According to the procedure above, we raise each side to the power D and then

add them together, giving 3 X 4% x 37KD o 3 jgk(log 4 - D log 3) and this is
just 3 if we choose D = log104/10g103 = 1.26. So the snow-flake curve has
dimension 1.26 and its 1.26-dimensional measure is 3., The dimension measures
the degree of wiggliness of the curve, so that the snow-flake is apparently more

wiggly than our coast-line,

The next curve was discovered by Giuseppe Peano in 1890. We begin with a
square of side 1, say, as in figure 7. To get the next stage, the typical side

Figure 7

AB of the square is replaced by 9 segments of length 1/3; the corners are cut
off so that the curve can be followed unambiguously from A to B. For the next
stage, each side of this figure is replaced by 9 segments of length 1/9 in the

same pattern, and do on. The limit curve fills the whole of a square of side 2.



This, of course, is impossible,. Yet, since it has been done, it gives new meaning
to the well-known boast that the impossible merely takes a little longer. After
k steps in the construction, Peano's curve consists of 4 x 9k segments, each

of length 3bk. If we raise each gide to the power 2 and add, we get

4 x 9k x 3_2k = 4, independent of k. So we have confirmed that the Peano
Eurve has dinension 2, which should be the case since it fills an area in the
plane. As though this monster was not bad enough, it is possible to comstruct
curves along these lines which fill a cube in three-dimensional space. This,

of course, is impossible. All such constructions were branded as monsters at the
turn of the century, but it is not too hard to see their counterparts in real life.
Consider, for example, the theory of the circulation of the blood as propounded in
"The Merchant of Venice". The downfall of Shylock requires that there should be
an artery and a vein infinitely near every point of the flesh. That is, every
point of the flesh lies on the boﬁndary between the two blood networks. On the
other hand, the volume of all the arteries and veins is only a small fraction of
the body volume, leaving the bulk to flesh. Thus the flesh is a surface which
fills most of the volume of the body. This, of course, is impossible.

There are many other natural surfaces which are so irregular that they cannot
be assigned an area in the usual way which enables us to measure the surface area
of a sphere or a cylinder. The craters on the moon form cascades in the same
way as the bays and headlands along a coast-line. Big craters have little craters
and little craters have lesser craters, not to mention the holes made by all those
marauding astronauts with their flag-poles. Again, you cannot measure the surface
area of a sponge by wrapping a sheet of tin-foil around it. (This might be a good
way of dealing with a sponge cake that didn't rise.) Many of these phenomena can
be described by models derived from the gallery of monsters of analysis. The
characteristic feature of all these surfaces is that we must assign them dimensions

larger than 2.,

Let us return to the contemplation of the sponge which, as you will recall,
we left wrapped up in tinfoil. The tinfoil gives a very poor idea of the total
surface area of the sponge, though it did an excellent Jjob in postponing the
window-washing last week-end. A more realistic way to tame the sponge is to apply
method 3. Imagine each point of the sponge replaced by a drop of water of radius
n. Instead of a sponge, we now have dozens of sheets of lasagne, each of thickness
2n, and hopelessly stuck together. Now, we can measure the volume of the lasagne,
by squeezing the water out of the sponge, and divide by 2n to get our estimate

of the surface area. Do you think this 1s a practical method? Let us return



even further to method 1. The idea here is to replace the surface by something
smooth enough to measure, which follows the meanderings of the surface down to
the scale 1. We might try to replace the surface by a surface made up from
trillions of little triangles in the same way as we replaced our coast-line by
lots of little line segments. This 1s rather hard to visualise, so instead of

triangulating the sponge, let us try to triangulate a cylinder.

Our modest aim, for the moment, is to measure the curved surface of the right
clrcular cylinder

S = {(x,y,z) :x2+y2=1, 0<z<1},

shown in figure 8, 'The idea is to approximate the surface by a network of little
triangles which we construct as follows.

Figure 8

First draw  2m + 1 circles CO’ Cl’ i sz round the cylinder, spaced equally
in the 2-direction. The equation of the j-th circle is

C:j = {(x,y,2z) : x2 + yz =1, z = 3j/2m},

Next, mark n equally spaced points round each of these circles. To get the n
points on the circle Co, we start at (1,0,0) and move round the ecircumference
through successive angles of 360°/n; the points we get have coordinates

(cos (360k/n), s51n(360k/n),0) with k = Oy Ly 24 iivyg o= A, The.starting point
on C1 lies above the midpoint of the arc joining the first two points on C
it is (cos 360/2n, win 360/2n, 1/2m). Then we continue round Cl through
successive angles of 360/n as before. The starting point on C2 lies above

the starting point on ¢

o’

0’ that on C3 lies above the starting point on Cl’
and so on, So the points on the even-numbered circles are

(cos(360k/n), sin(360k/n), j/2m), 3=0,2,4, ..., 2m, k = 05 &; 25 vewy Bo- T3
the points on the odd-numbered circles are

(cos 360(k + %)/n, sin 360(k + ¥Win, $/Mm), 3 =1,3,5, eoes2m~l, k=0,1,2,...,n-1,



We join the points on neighbouring circles by straight lines in a zig-zag fashion
as shown in the figure. In this way, we get a network of triangles with their
vertices lying on the cylinder 8. There are 2n triangles between the circles
C0 and C
congruent, so we only need to calculate the area of the one with vertices

P = (1,0,0), Q = (cos(360/n), 5in(360/n,0), R = (cos(180/n), sin(180/n), 1/2m).
This triangle has base

PQ = {(1 - cos 360/n)2 Pape. 360/nY% = {2 2 2 cos 360/1‘:]‘!5 = 2 gin 180/n.

The altitude of the triangle joins R to the midpoint T of PQ, and its
length is

RT = {(cos 180/n - %(1 + cos 360/n))2 + (sin 180/n - % sin 360/n)2 + (1}'21:1)2}’i

1» SO there are 4mn triangles altogether. These triangles are all

= {(cos 180/n - c052 180/n)2 + (sin 180/n - sin 180/n cos 180/11)2 + (1/2m)2}¥
= {(1 - cos 180/m)% + 1/4m®}% = {4 sin® 90/n + 1/4u2}? |

The area of this triangle is %PQ X RT and, from this, the total area of the 4mn

triangles we have constructed is
A(m,n) = 2n sin 180/n {16m2 s 90/n + 1}%

If we let m and n tend to infinity, the triangles get smaller and smaller and
closer and closer to the cylinder 8. So the total area of the network of
triahgles should tend to a limit and this limit should be the familiar area of
the curved surface of the cylinder. The cylinder has height 1 and the radius
of its base is 1, so the area in question is 2. That seems fair enough, but
since we have gone to all this trouble to calculate A(n,n), we may as well

carry on. Recall that if 6 4s a small angle measured in degrees, then
sin 6 = 70/180

and the relative error in this approximation gets smaller and smaller as © tends

to 0. (You can see this from figure 1. If 6 41s small, then sin 6 is

approximately equal to the segment PQ divided by OP and this is approximately

equal to the arc PQ divided by OP. Now the arc PQ 1s proportional to the

angle 6 and it is equal to the circumference of the circle when = 360°, so

we get sin0 ¥ (arc PQ)/OP = 21 6/360.) If we use this approximation in the
expression for A(m,n), we get

Alm,n) ~ 2n{(@*n?/m) + 1}%

and this approximation becomes better and better as m and n get larger and

larger. Now we shall make some special choices for m and n.
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(1) Suppose m = mn, Then A(mm) =~ 2u{1l + 'rrt'/nz};i, so A(n,n) * 21 as n ~* oo,
There, told you sol The total area of the triangles approaches the area of the
cylinder. All that ghastly trigonometry was obviously a waste of time.

(i1) Suppose m = xn2 with x > 0. Then A(m,n) = 2n{l + ﬂéxz}%; so

A(xnz,n)'* 2n{1 + “4x2}% as n > o, But that's ridiculous. If we choose a
suitable value for x, we can make the total area of the triangles tend to
anything we like, so long as its bigger than 2. All that ghastly trigonometry

certainly was a waste of time.
3 642 . N
(i) Suppose m = n"., Then A(m,n) = 2r{r n° + 1}*, so A(n’,n) * ®. No comment.

This construction was suggested by Herman Schwarz in 1880. It 1s an advanced
case of the paradox discussed in method 2 above. What happens in (ii) and (111)
is that the rings of triangles become more and more pleated, like a Chinese lantern,
and their area can therefore add up to something much larger than the area of the
cylinder. (See Parabola, Volume 17, Number 1.) The moral is that neither
method 1 nor method 2 1s much use in measuring'a complicated surface because we

will probably not be able to tell if the approximating surfaces are too pleated.

Here, to conclude our story, is a positive note. The answer to the question
in the title is 19,540km (including Tasmania).

Reference. This article was inspired by the fascinating book by Benoit Mandelbrot
called "Fractals : form, chance, and dimension" (Freeman, 1977). . For example, the

data for the Australian coast-line was taken from Chapter 2 of this book.
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