H.S.C. CORNER BY TREVOR

PROJECTILES

The differential and integral Calculus has important applications in physics and/or mechanics. One such problem involves projectiles - the concern of these notes - which you may encounter in the H.S.C. papers.

For the sake of simplicity we take the origin to be the point of projection, x,y the horizontal and vertical co-ordinates respectively, and u,v the velocities of the projectile in the x,y directions respectively at time t after the instant of projection. Let V be the speed of projection at t=0, α the angle of projection at t=0, then the familiar equations of motion, neglecting air resistance, are

$$x = Vt \cos \alpha$$
 (1)

$$y = Vt \sin \alpha - \frac{1}{2} gt^2$$
 (2)

The path of the projectile is obtained by eliminating t from (1) and (2), yielding

$$y = x \tan \alpha - \frac{1}{2} \pi x^2 \sec^2 \alpha / V^2$$
 (3)

This is the equation of the parabola which intersects the x axis at x = 0 and at x = R, where R, the "range", is

$$R = \frac{2V^2 \sin \alpha \cos \alpha}{g} = \frac{V^2 \sin 2\alpha}{g} \qquad (4)$$

It can also be shown from (1), (2) and (3) that the 'time of flight' is $2V \sin \alpha/g$, and that the highest point reached by the projectile has a height of $V^2 \sin^2 \alpha/2g$, and this point is reached after a time of $V \sin \alpha/g$.

Most problems on projectiles can be solved by the application of equations (1), (2), (3) and (4). Frequently V is taken as constant and α may be varied. Regarding R as a function of α we observe from (4) that the "maximum range" occurs when $\sin 2\alpha$ is maximum, i.e. when $\sin 2\alpha = 1$ and so $\alpha = \frac{\pi}{4}$. Hence

$$R_{\text{max}} = \frac{V^2}{g}$$
.

If we wish to reach a point at a distance d on the ground, it is clear that the condition is

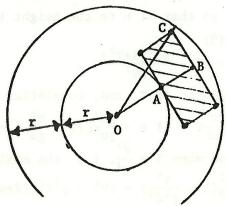
$$d \le R_{\text{max}}$$
, i.e. $d \le \frac{V^2}{g}$.

From recent H.S.C. papers we discuss two questions.

(i) In 1979, 4 Unit Question 3 requires a proof of (4). It then goes on "A garden sprinkler sprays water symmetrically about its vertical axis at a constant speed of V ms⁻¹. The initial direction of spray varies continuously between angles of 15° and 60° to the horizontal. Prove that from a fixed position O on level ground, the sprinkler will wet the surface of an annular region of centre O with internal and external radii $\frac{V^2}{2g}$ m and $\frac{V^2}{g}$ m respectively. Deduce that by locating the sprinkler appropriately relative to a garden bed of size 6m by 3m, the entire bed may be watered provided that $\frac{V^2}{2g} \ge 1 + \sqrt{7}$."

The first part is easy. The maximum range is $\frac{V^2}{g}$, and therefore the external radius of the annulus is $\frac{V^2}{g}$. The internal radius is the lesser of $\frac{V^2 \sin 30^\circ}{g}$ and $\frac{V^2 \sin 120^\circ}{g}$, and this is $\frac{V^2}{2g}$.

The last part is an exercise in geometry, suitably disguised. Let $\frac{V^2}{2g} = r$, and place the rectangle in the annulus, as in the figure:



Clearly the best position is the symmetrical one. Then 0B = 0A + AB = r + 3, and $0C^2 = 3^2 + (r+3)^2 = r^2 + 6r + 18$. But $0C \le 2r$, $r^2 + 6r + 18 \le 4r^2$, i.e. $3r^2 - 6r - 18 \ge 0$, so that $r^2 - 2r - 6 \ge 0$.

Solving the inequality, either $r \le 1 - \sqrt{7}$ or $r \ge 1 + \sqrt{7}$. But $r \ge 0$ and $1 - \sqrt{7} < 0$, and hence $r = \frac{V^2}{2g} \ge 1 + \sqrt{7}$.

(ii) In 1980, 4 Unit Question 4 asks for (3) and (4), then it goes on:

"A vertical wall is a distance d from the origin, and the plane of the wall is perpendicular to the plane of the particle's trajectory.

(a) Show that if $d < \frac{v^2}{g}$, the particle will strike the wall provided that

$$\beta < \alpha < \frac{\pi}{2} - \beta,$$
 where $\beta = \frac{1}{2} \sin^{-1}(\frac{gd}{v^2})$

- (b) Show also that the maximum height the particle can reach on the wall is $(V^4 - g^2d^2)/2gV^2$."
- (a) First of all, $d < \frac{V^2}{g}$, otherwise the wall is not within range at all, i.e. $d < maximum\ range$. When $d < \frac{V^2}{g}$, then, to strike the wall

$$\frac{V^2 \sin 2\alpha}{g} > d$$

$$\therefore \sin 2\alpha > \frac{gd}{V^2}$$

This implies that

$$\sin^{-1}(\frac{gd}{v^2}) < 2\alpha < \pi - \sin^{-1}(\frac{gd}{v^2})$$
 and the result follows.

This part looks difficult but is really very simple if we put $T = \tan \alpha$, (b) and then $\sec^2\alpha = 1 + T^2$, so that if h is the height the particle reaches on the wall, then, from (3)

$$h = dT - \frac{gd^2(1+T^2)}{2V^2} .$$

This is a quadratic expression in T, and, completing the square,

$$h = -\frac{gd^2}{2V^2}(T^2 - \frac{2V^2}{gd}T + 1) = -\frac{gd^2}{2V^2}[(T - \frac{V^2}{gd})^2 + 1 - \frac{V^4}{g^2d^2}]$$

 $h = -\frac{gd^2}{2V^2}(T^2 - \frac{2V^2}{gd}T + 1) = -\frac{gd^2}{2V^2}[(T - \frac{V^2}{gd})^2 + 1 - \frac{V^4}{g^2d^2}]$ This expression is maximum when $T = \frac{V^2}{gd}$, i.e. the maximum height reached is $-\frac{gd^2}{2v^2}(1-\frac{V^4}{\sigma^2d^2}) = (V^4-g^2d^2)/2gV^2.$

SOLUTION OF THE POLYNOMIAL PROBLEM IN VOLUME 17, 1.

Let $P_n(x) = 1 + \frac{x}{1!} + \frac{x}{2!} + \frac{x}{3!} + \dots + \frac{x^n}{n!}$ be denoted by P_n for brevity.

Observe that P_n has the following properties:

(i)
$$\frac{dP_n}{dx} = P_n^1 = P_{n-1}$$

(ii)
$$P_n = P_{n-1} + \frac{x^n}{n!}$$

1.
$$P_2 = \frac{1}{2}(x^2 + 2x + 2) = \frac{1}{2}[(x+1)^2 + 1] > 0$$

for all x. Obviously P has no real zeros.

- 2. Observe that $\frac{dP}{dx} = P_3^{\dagger} = P_2 > 0$ for all x. Since P_2 has no zeros, P_3 has no turning points, while the absolute value of the largest term is x^3 in P_3 . This term is positive as $x \to \infty$ and negative as $x \to -\infty$, hence P_3 will cross the real axis at some point, i.e. it has one real root.
- 3. Observe that $\frac{dP_4}{dx} = P_4' = P_3$ and by (2) P_3 has just one zero, say at $x = a(a \neq 0)$.

$$\frac{d^2P}{dx^2} = \frac{dP}{dx} = P_3^* = P_2 > 0, \text{ so } P_4 \text{ has a minimum.} \quad \text{Observe also that}$$

$$P_4(a) = P_3(a) + \frac{a^4}{4!} > 0, \text{ since } P_3(a) = 0.$$

Hence $\frac{1}{24}$ a, is the minimum value of P, and P, (x) \neq 0 for any real value of x.

4. The proof for any n is by induction. Let N be an <u>even</u> integer, and assume that $P_N(x)$ has no real zero. Now $\frac{dP_{N+1}}{dx} = P_{N+1}' = P_N > 0$ for all real x, hence P_{N+1} has no turning points. It follows that P_{N+1} has just one real zero at, say, x = a. (Note that $P_{N+1}(0) = 1$, hence $a \neq 0$).

Consider now $\frac{dP_{N+2}}{dx} = P_{N+2}^! = P_{N+1}^!$. Since P_{N+1} has just one zero and $\frac{d^2P_{N+2}}{dx^2} = P_{N+1}^! = P_N > 0$, it follows that

 P_{N+2} has just one turning point which is a minimum at x=a. Moreover as $P_{N+2}=P_{N+1}+\frac{x^{N+2}}{(N+2)!}$, it follows that $P_{N+2}(a)=\frac{a^{N+2}}{(N+2)!}>0$. Hence $P_{N+2}(x)>0$ for all real x.

But we have already shown that P_2, P_4 have no real zeros. Hence by induction P_6, P_8, \ldots, P_N have no real zeros whenever N is an even integer.

THAT'S ALL VERY INTERESTING,

PYTHAGORAS — BUT WILL

IT HELP ME GET A JOB?

