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SUMMING INFINITE SERIES

MICHAEL N. BARBER

Summing series of the form uy + u, * uwm T uy is a common problem in
mathematics. For some of these series it is possible to find a compact formula
by algebraic methods, as for example for the geometric series you probably

already know: : N

SN = a+ar + ... + .<.|.rm_1 = Ei%_;%f_l . (1)

Furthermore you know that for Irl < 1 you can extend the summation to N— o,

so that
T
n- a
a ) r - — . (2)
asl I* g
I -4
In general we say that ) - U has a limit sum if U is finite. The
n=]

conditions under which such a limit exists. are*studied at university. Except
for noting that an obvious necessary condition for U to exist is that

lim u, = 0 , we will not discuss these conditions further in this article.
N+ 1 :

Rather our interest will be in estimating the value of U (assumed to be finite)
given the terms of the series Uy Mos wee up to... uy .

As a specific example we shall consider the series

-

-2 1 1

n = 1+Z-+-g+... (3
n=1 .
which can be shown to equal -%r = 1.64493406... . Presumably we could utilise

this series to estimate the value of 7 . One would obviously nmot obtain
exactly unless all terms are summed. The question is now: How many terms are
needed to evaluate T to, say, eight significant figures? The answer is sixty
million! Even with a high speed computer this is a daunting if not impossible
task.

Of course, T 1is known to high accuracy from methods other than summing
(3). However, the problem of estimating the sum of an infinite series from a
finite (and hopefully small) number of its terms arises in many areas of
applied mathematics. Over the years various methods, some very elaborate, of

doing so have been devised. Two of the best methods are however based on
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nothing more than simple properties of the geometric series,

Let us write

(-]
U= §u YR, )
n=1
where we assume we know
N
UN = nzl un = u1 + u, H anal @ Ue

and un+1 but do not know the remainder RN

RN =

u = TR S L (6)
b e Y1 T Une2 :

~ Obviously to estimate U we need to estimate RN" A very simple way of doing
this was suggésted in the early 1950's by an American applied mathematician,
David Shanks: regard RN as a geometric serfes with initial term U and a
common ratio given by ry = uN+i/uN.(Since' U 1is assumed to exist, we have
IrNI <1 .) Hence

Bu = Ut/ o) o= wg g/ Cay - ) o
and we estimate U by
R R T (8)
N S (T e (AL T VPP 6
As N increases we expect and can indeed prové that the new sequence {Uéi)}

has the same limit U as the original sequence. The hope is that Uél) is a
better approximation than UN :

Let us test this idea on the series (3). We have

1 i3
U1=u1 =1, U2 u:‘.-l-u2 1-4-, UB 111-~!-t12+u3 1 36=1.361111... (9)

8o that simply summing the first three terms gives only one figure of the exact sum
(n?/6 = 1.6449...). On the other hand, using (8) we find U(l)s U'Fufb/(ui—u2)=

1 1
1 %- and Ugi)-l.%%-B 1.45 which 1s significantly closer. The efféct of in-

corporating further terms is shown in the second column of Table I. Note that
given five terms in the original series, we obtain Ui,Ué, g~ U; .

We can now regard
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g S8 2y ) ur(ll) - ui(l) +u§1)’+ e + ué” (10)

where

oD ag® @ @)y

] n n 1 9 n L 2,3, u--,N ° (11)

Hence we can repeat the transformation using (8) to define a second, a hopeful

yet better, approximation to U. namely

(2) (1) (1) (1) (1) _ (1)
Uy U * gty /vy } (12)

which is shown in the third column of Table I. This in turn can he transformed
until we build up the triangular pattern evident in Table I. Since each time
we transform, or to use the technical term accelerate, the series, we lose one
term, we can only‘apply‘(B) N-1 times if we have initially N terms. The
striking result of Table I is that from five terms we estimate w2/6 = 1.586
whereas directly summing ten terms in (3) only gives m2/6 = 1.55 .

We can do even better if we are a little more clever. Clearly we have made
& very big assumption in approximating the remainder after N terms by a geo-
metric series. Let us relax this assumption by allowing RN to be not exactly
uN+1uN/(uN uN+1) but proportional to 1t, i.e. we write

Ry - °"“u+1“N/(“N = Uggq? - (13)

The pfdblem is now: what value do we use for & ? An answer to this can
be found as follows. If we stop sumning after N terms the remainder is RN ,
vhile if we were to add one more term Uer1 to the sum we would be left with
the remainder RN+1 . Clearly we should have

Ry = Uy tPRyyg - (14)

Substituting (13) in (14) gives an equation for a , namely
o a :
__:gilfﬁ_ = g, * __Eﬂi%gﬁil_ . (14)
W T UNer UNe1 T Une2
Solving for a we find

(Uney = Ung) Cay = vgyy)
Yo NN T 2

(15)
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so that

R, = Untr U (e = Y2 ] (17)
UntoUnbe U T 28N

Thus given UyslUpy eeesly,, 5 We now define a new approximafion for the sum
U by

( = )
e HEY o et T a2 (18)

i o Une2Bne2 U T 2UyY

The effect of this transformation, known as the 6 -algorithm, on (3) is shownm

in the second column of Table II. Again we may successfully repeat the trans-
formation to construct the rest of the table. Note that this time each trans-
formation loses us two terms. Nevertheless, the table is rather spectacular;
the third column gives #2/6 to six figures. Indeed, if we use twenty terms in
(3) we obtain

= 1.6449340668431 ..

ml A

which 1s correct to twelve figures! A word of warning is appropriate if you are
interested in trying these techniques for yourself. To obtain this accufacy one
needs to work very precisely. If you keep only say six figures in your arith-
metic you will only get the sum to probably at best three or four figures. It
is best to try and keep all intermediate steps as fractions, only resorting to
decimal numbers at the last moment. Nevertheless, you should be able to sum (3)
to at least four figures using less than eight terms. Why don't you try? You
might also like to try the following sums: .

L]

z * (2n~1) - 3
ael aln + Dia + 2) 4
;-ljn—i _ I

=) 2n-1 4

Finally, if you think that this is all a bit mysterious you are not alone.
The mathematical reasons why these sorts of transformations work so well are very
unclear. Indeed, the whole area of accelerating the rate at which an infinite

sum approaches its limiting value is a continuing area of research,
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TABLE I: Estimation w”/6 by Accelerating Series (3) Using

Shank's Transform

uy Uy B e e
1 1 1,333 1.4612  1.5562 1.5858
: 1.25 1.4500  1.5504  1.5852
%- 1.3611 1.5040  1.5754
& 1.6236  1.5347
s 1.4636

TABLE II: Estimation of w?/6 by Accelerating Series (3) Using

‘the 8- algorithm

n U i 62 5 5%

1 %y 1.625 1.645745  1.644921  1.644935
2 1.25 1.638888° 1.644895 1.644938

3 1361111 1.642361  1.644923  1.644934

4 1.6423611  1.643611  1.644930

5 1.463611  '1.644167  1.644932

6 1.491389  1.644450

7 1.511797  1.644610

8 1.527422

9

1.539768
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