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THE COASTLINE OF AUSTRALIA
BY

B.C. RENNIE *

For hundreds of years, it was accepted in international law that the territorial
waters of any country extended three miles from the shore. That particular distance
was probably chosen as being the extreme range of the sort of cannon that were used in
fortifications. More recently, there has been a tendency for countries to claim
jurisdiction up to a two hundred mile limit. When this question came up a few years
ago in Australia, the Royal Australian Navy was concerned because the change would
mean that the Fisheries patrols would have to cover a much larger area of sea. How
much is the extra area? People said it was 197 (= 200 - 3) miles times the length
of the coastline. They were wrong because, as all Parabola readers know, the length
of the coastline is infinity. However, there is some truth in the idea.

For a start, considera.simpler situation. Let E be the blob in figure 1.
(More precisely, suppose E is convex, that is a line segment joining any two points
of E 1lies entirely in E.) Let E(r) be the set obtained by adding all points at
distance r or less from E. Let us denote the area of the blob E by A and its
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Figure 1,

* Professor Rennie is professor of mathematics at James Cook University in Townsville.

Who's Who lists his recreation as sculling; readers may detect this interest in his
article.



perimeter by S. What can we say about the area and perimeter of E(r)? To measure
the perimeter of E(r), imagine a ruler of length r moving around E and always
perpendicular to the boundary. As the ruler moves around E, the outer end describes
the perimeter of E(r). To see how far it moves, we can break the motion into two
components. Firstly, the outer end must follow the inner end which moves a distance

S round the perimeter of E. Secondly, the outer end makes one complete revolution
about the imner end and the contribution from this component is just the circumference
of a circle of radius r, namely 2nr. So the perimeter of E(r}) is S{(r) =S + 2ur.
To measure the area of E(r), imagine E surrounded by lots of loops of string. The
loop shown in the figure has length S(t) and thickness dt and so covers an area
5(t)dt. To get the area of E(r), we have to add the areas of all these loops, as t
runs from 0 to r, to the area of E. For very thin string, the sum becomes an
integral, so the area of E(r) is

r r )
A(r) = A + J S(t)dt = A + I (S + 2nt)dt = A + Sr + ar’.
0 0

However, if the set E has bumps, that is E 1is not convex, then things are more
difficult. For example, the perimeter of [ may be infinite. We shall see that the
expanded sets E(r) are always smoother than E. For example, if E is bounded,
that is it does not extend indefinitely in any direction, then E(r) has a finite
perimeter for any positive value of r. To prove this, imagine yourself sailing
anticlockwise round Australia on the three mile limit, keeping a reasonable speed of
at least one knot. You would probably get round in a few years. How do we know for

Figure 2.



certain that you would take only a finite time? Imagine you are making a chart of all
the waters up to one mile on the port (inshore) side of your track. In each hour, you
will travel at least one mile and chart at least 5/6 of a square mile. (See figure 2.)
As you never chart the same bit of sea twice and as the total area of the territoriai
waters is finite, you must finish in a finite time. That is the general idea of the
proof, but of course there are some details to be tidied up. To do the job properly,
you will have to detour to make the circuit of Tasmania and various other islands and
you will have to go clockwise round Port Philip Bay. As you can see in figure 2, the
boundary of the three mile limit may have sharp turns to starboard when you go round
anticlockwise, but the turns to port are only very gentle; in fact, their radius of
curvature is at least three miles.

Suppose the set E is connected, that is it is not in two separate bits. The
extended set E(r) has a finite perimeter S(r) for any positive value of r. Now
S(r) as a function of r may decrease quickly and it can even decrease discontinuously
as shown in figure 3, but it cannot increase too fast. It is not too hard to see that
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r = %f— r just less than -1'21 r just greater than %
S(r) = 20 +w - S(r) = 20 +w S{r) ~w
Figure 3.

the derivative of S{r) with respect to r satisfies dS(r)/dr <2n. Some people
might object at this stage that a discontinuous function has no derivative, but take
no notice; difficulties of this kind are overcome by using more advanced mathematics.

Now to return.to our original question about how the area A(r) changes with r.
First, we see that the derivative of A{r) with respect to r is just S(r). You



can see this by adding a loop of thin string around the boundary of E(r) and calculat-
ing the change in area. So we have

%ﬁ-g?ﬂ and d—géil = S(r).

Let us denote the area and perimeter when r = o by A(ro) = AO and S(ro) = S0
respectively. If we integrate the inequality above from o to r, we obtain

S(r) - S0 < 2n(r - ro), or %léso + 2u{r - ro).

Integrating again gives
2
A(r) - Ay <§So(r -.ro) + w(r - ro)
We can even get an inequality in the other direction. Suppose that E has maximum
diameter d, so that E contains two points P and Q this distance apart, but no
pair of points any further apart. (See figure 4.). Then E(ro) had diameter
d+2ry;. Llet Py and Qg be two points of E(ro) which are a distance d + Zro

Figure 4.

_apart and cut the area into strips by lines perpenﬂicu]ar to POQO. By comparing
areas-, you will see that .
A(r) - AO = 2(d + ZrD)r - ro) + w(r - r‘o)2 ;
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