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Part 1

I was spending the weekend at Woodful Towers when wealthy old Sir Joshua Woodful was
horribly murdered in the library. You probably read about it - it was in all the
papers at the time. Immediately I called in my old friend Atlas Pierrot who was
passing through the nearby village at the time on a walking holiday.

So it was that we were all gathered in the Tibrary with Inspector Hoey on a stormy
night. The wind howled as we sat gazing at the large stain on the carpet. Atlas
spoke, “I have made a complete 1ist of the suspects". He placed a piece of paper on
the table, on which was written, 'The Squire, The Vicar, The Cook, The Butler, The Maid,
The Gardener'.

"Now for the alibis", said the inspector. "The vicar was taking evensong at the
time of the murder".

Atlas crossed the name off his list.

"The cook was at the Women's Institute”,

Atlas crossed off the name.

“The squire and the gardener were playing darts at the Pig and Whistle",
Two more names were crossed off.

“The maid was at the Roxy cinema at Woodfulton", I added.

A smile flickered across Atlas's face as he crossed off another name.

“Well, inspector, when we have eliminated the impossible whatever remains, however
improbable, must be the truth’

"You sould like Mr. Holmes ', remarked the inspector.

"So the Butler did it", | gasped in astonishment. Just then the 1ights went out.

* We wish to thank the Editors of Mathematical Spectrum for permission to publish
this article.



Afterwards 1 talked to Atlas about this method of making & 1ist of all the

possibilities and working through them.

“There is the restriction on its use in that there must only be a finite number
of possibilities", he explained. "However, many situations do meet this condition,
in particular the mathematical model of the logic of propositions known as the
propositional calculus®.

“Does this model exactly mivror the real situation?" I asked. .
“No. To do this requires a complex model and so we compromise and select the
most realistic simple model.

We first have simple propositions or sentences which are statements of fact and
are either true or false; e.qg.

‘snow is white' 1is true,
‘a cube has 7 faces' 1is false.

Next we select the logical words we want to have in our model. In this model we have
not, énd. or, if-then, -

We use these to build up complex sentences; e.q.,
*if snow is white then a cube has 7 faces', ‘not snow is white®,"
"Just a minute, shouldn't that be 'show is not white'?"

"Yes, but the model would be much more complex if it had to consider the correct
grammatical position of the 'mot’ so.we always put it at the front. - Similarly we
depart from the common usage by using brackets in the model, e.g.,

*if snow is white then {a cube has 7 faces or London is in England)’.

This is to avoid the ambiguity which would result if the brackets were dropped".

"Dash it all, I would never use a sentence 1ike that".

"Correct, but it's the same old problei. If the model only included sentences
we commonly use, then it would have to be very complex, so we simply allow all possible
sentences. :

This then produces a new problem. How do we decide whether a sentence is true
or false if nobody ever uses it?"

"Deuced difficult, what!®

“In fact the answer is forced on us by our insistence on a simple model. Let me
show you. What have the following sentences got in common?



"Snow 1s white and a cube has 7 faces’.
‘London is in England and a rabbit is not an amimal’.
'The world is round and 5 is bigger than 12°'."

"They all have the form
'a true sentence' and 'a false sentence'."

“Right. So in order to keep the model simple we insist that all sentences of
this form behave in the same way, that is either they are all true or all false. We
put a similar condition on other forms of sentences."

"Hold on!  You still have to decide which they are all going to be, true or false."

"We will do that now. There are 14 different forms to consider, so I will leave
you to work some out for yourself.
The first form is
not 'a true sentence’'.
A typical example of this is
'not snow is white'."

"That is false and I would expect any sentence of this form to be false.”

“So we put in our medel that all sentences of this form are false. I will leave
the sentences of the form
not 'a false sentence'
to you and also the 4 "and' sentences.
What about sentences of the form
'a true sentence' or 'a true sentence'?"

"Well, when I ask Babs if she wants to go to the Savoy or the Ritz I jolly well
don't mean .both. So I think these sentences are false.®

"But what about that notice which says that you can get into the Test Match for
half price if you are a student or a pensioner. You would make old Edgar Witherspoon
pay full price just because he is attending evening classes during his retirement.

The trouble is that ‘or' has two meanings and so to keep our model simple we select
one and«it happens to be the one which allows both parts of the sentence to be true.

We select this meaning, so mathematicians use this one.®

IISO
‘snow is white or a cube has 6 faces'
is true."



“That is correct. The other 3 ‘or' cases are quite straightforward and I will
leave them to you. Finally we come o 'if-then’.
Let's take an example, say,
if snow s white then a cube has 7 faces'.”
"Well I would never start a sentence 'if snow is white then ...' since T know

snow is white already."

“So you have to consider sentences where you don't know whether they are true or
false. For example, do you know where your friend Algy is at the moment?" '
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“So what do you think of the sentence
*if Algy is in London, then Algy is in England'?"

"It is true.”

“Good. MNow consider the four cases:
'Algy is in London® is true and °Algy is in England' is true,
*Algy is in London® is true and °‘Algy is in England' is false,
"Algy 1s in London® is false and °'Algy is in England' is true,
"Algy is in London® is false and 'Algy is in England' is false.
Which are possible?”

“The 1st, 3rd and 4th are possible, the 2nd is not. 1In fact I think this is
what I meant by saying the 'if-then' sentence was true.”

“So you were assuming
if true then true,
if false then true,
if false then false
are all true and
if true then false
is false."

Then I went away and worked out the cases Atlas had left. When I returned I
asked Atlas,
“How do we use these results?”

“Let us consider the case of bootlegging I am working on at the moment. The
facts we have are these:



Al or Frank or Bugs or John was involved,

if Frank was involved then {Bugs was and Al was not),

if Johnny was involved then Bugs was not,

if Frank was not involved then (Johnny and Al were),

if Al was not involved then (Johnny was and Bugs was not).
A11 we have to do is to write down the list of possibilities and check each one against
the facts. If we are lucky we will rule out all but one possibility and that will be
our solution. If more than one possibility is left then we need more facts to rule
out all but oneof these possibilities which remain.

We appear to have 16 possibilities:

Al was involved. Frank was involved. Bugs was involved. Johnny was involved
true true true true
true true true false
true true false true
etc.

Let us take a typical possibility, say,
true false true false.

The first fact is a number of sentences joined by ‘or'. You have worked out
that when we have two sentences joined by 'or' the whole is true provided at least one
of the two is true and false if they are both false. Well this extends to any number
of sentences. So, as 'Al was invlioved' is true the first fact is true.

The next fact begins *if Frank was involved ...' and 'Frank was involved' is
false and a sentence beginning 'if false then ...' is always true so the second fact
is true. The same argument shows the third fact is true.

However the fourth fact begins 'if Frank was not involved ...' and ‘not Frank was
involved' is true so we have 'if true then ...' which means we have to look at the
second half of the sentence Now 'Johnny and Al were' is only true if 'Johnny was
involved' and 'Al was involved' are both true which is not the case. S0 we have 'if
true «then false' which 1s false so the fourth fact does not hold in this possibility
so we can rule out this possibility. I will leave you to consider the other 15
pessiBilities and work out who was involved in the bootlegging.

By the way, what was the film you took the maid to see?"

"It was a story of police detection in San Francisco. You know the kind.

It is 1.00 a.m.

We are in the office at police headquarters. The lieutenant looks out of the
window at the lights of the city spread out below.



*Somewhere out there 1s a man whe has killed and will ki1l again unless we get
to him first. But how can we find him?!

‘There is one method that might work,' replies the chief, ‘get out the telephone
directories and pencils - lots of pencils'"

A Tittle while after his triumph at Woodful Towers, Atlas remarked that he now
thought me ready for a rather more formal introduction to the Propositional Calculus.
He thereupon presented me with a manuscript which I réproduced in full.

Part 2.

The propositional calculus involves the symbols &{and), v{or), = (if ... then),
7 {not), and letters p, q, r, s, ... which stand for sentences (such as ‘snow is white’,
‘6 is bigger than 12' etc.). The letters, in fact, perform the same function as the
familiar x, y, z, ... do in algebra. Since, then, their job is to indicate places
where a sentence may be put, they are called sentence variables or sentence place-
holders.  Our model is concerned with those rows of these symbols which become sentences
when the sentence place-holders are replaced by sentences. Such a row is called a
wall-formed formula or wff.

Examples. (p & q), (7 pv77(p*>q)) are wff's
p&, gqv>rq> are not wff's.

So far we have the part of the model concerned with structure. We now come to
the part concerned with meaning.  This involves two further symbols T (true) and
F (false) called truth values and four evaluation lists called truth tables.

p l=p p q | (p&aq) p gqf (pvaq) P qf (p—>q)
T L[ 71 T T T T T 7 T
F T ¢ F T F T T F F

F T F F T T F T T

F F F F F F F F T

We have already seen (in Part 1) how these are arrived at.

The parts of the model are now assembled and we are -ready to perform the basic
calculations. Suppose we are given a wff and to each sentence place-holder in the
wff is assigned a truth value. Then we can use the above truth tables to produce a
single truth value in the way illustrated by the following example.

wff:  ((p & q) v (#(p & 27q)~>r)).



Assignment of truth values: T top, F toq, F tor.
Replace the place-holders by the truth values:
({T&F)v (7 (T&77F)>F)).

Look for any expressions which can be evaluated by the truth tables, (T&F)=F,
— F =T. Replace each of these expressions by the single truth value, so simplifying
the whole expression:

(F

<

(w(T&-T)—>F)).
F, we obtain

(= (T & F) = F});

Repeat the procedure. Since -+ T

(F

<

and further
(Fv (#F=>F)),
(Fv (T=+F)),
(F v F),
F.

Now we can think of a wff as a machine or function with inputs, in this case
three, p, q, r. We input the assighed truth values and get out a truth value, in
this case F. Because there is only a finite number of possible inputs we can list
them and against -each input give the resulting output. Thus we obtain a complete
,déscriptidn of the wff working as a truth machine. We extend the use of the term
*truth table' to include such a list.

Example. The truth table for the wif ((p & q) v (+ (p & »+4q) = 1)).

Input OQutput

ri ((p&qg)viz(p&>7q)>r))

MM M M A~ 4 |
I I e B R -
4 M 4 M —~4 M A
-




The method used to obtain the given entry can be used to compiete the table.

Now that we have the basic parts of the propositional calculus we can ask, how
does it fit into the general field of mathematics and logic?  The following points go
some way to answering this question.

1. One can enlarge the model by adding parts to model the togic of the phrases *for
all ... such that' and ‘there exists ... such that'. The new model is called the
restricted predicate caleulus.

2. The basic parts of the propositional calculus descriﬁed above and the corresponding
'parts of the restricted predicate calculus form the workiﬁg Togic which the mathematic-
fan picks up incidentally in his training and which he uses every day to construct his
sequences of mathematical deductions.

3. A similar remark applies to the computer programmer, although his use is more
explicit and more formal and precise than that of the mathematician.

4. A lot of work is done in simply studying the model. This proceeds in the same
way as any branch of pure mathematics by asking questions which seem interesting and
trying to answer them. One important example of this is the adding to the model of a
structure to model the idea of deduction. For example,

fron  "if AABC is right-angled at A, then ABZ + ACZ = pclt
and ‘4ABC is right-angeld at A®
we deduce  'ABZ + AC® = pg2r.

This is added to the model as the rule
from ((p > q) and p) deduce q.

One can now take a selection of wff's and see what other wff's can be deduced from
them. This is just the sort of thing that is done in axiomatic mathematics (e.g.,
group theory) where one begins with a set of axioms and aims to deduce interesting
consequences.

To demonstrate the scope of the propositional calculus we discusé one of its
important theorems and a rather surprising deduction from it.

Suppose we are trying to find a positive integer x to satisfy all of the
following sequence of conditions,

x#1, x¥2, x¢3, x¢4a, ...



If we take any finite set of the conditions, e.g.,
szv xfsi xftas

then"we can Find an x, say 1, to safisfy all the conditions in the set, However,
when we put all the infinite number of conditions together we find there is no x
which satisfies them all. Thus we have a situation where every finite part is
satisfiable but the infinite whole is not.

Can we have a similar situation with the propositional calculus?  Suppose we
" have an infinite sequence of wff's, e.g.,

(P] & p3)- 7 Pos (p4*7 p]-), (P] & p]) ¥ Doy wss
which involves the'senpence place-holders P1s Pos Pgs oo (of which there may be an
infinite pumber).  We have to try to assign truth values, T or F, to the pi's
so as to give every wff in the sequence the truth value T. The compactness theorem
of the propositional calculus says that if, for every finite set to wff's from the

sequence ' we can»find suitable truth values, then we can find suitable truth values for
~* _the whole infinite sequence.

The proof of this thearem goes roughly as follows. 1f we do an exhaustive
search for possible suitable truth values

for Py for p, and Pps forlp], Py and Pgs oo

in turn, either we will succeed in finding suitable truth values for the whole infinite
sequence or we will be stopped at some point in our search. This point will provide

us with a finite set of wff's which cannot all be given the truth value T simultane-
ously. This situation contrasts with the above situation involving integers. The
reason for the difference is that for all x there was an infinite number of possible
choices of value, viz. 1.2, 3, 4, ... whereas for each p; there is only a finite
number, viz. T, F.

The compactness theorem may be used to obtain a result about sets (which is usually
called the Heine-Borel theorem). This may be stated in the following form. A line,
one metre long, is covered by an infinite number of coins. (These coins may be of
varying size and some of them may be very small.) It is then possible to remove all
but a finite number of the coins and still have the line covered. By the way, when
we talk of a.pdjn; of the line being covered, we mean that the point lies underneath
the interior-of the coin, not just its rim.

To apply the compactness theorem we 1ist the conditions which a point, say x,
of the line would have to satisfy if it was not to be covered by the original coins.
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To do so we express x as an infinite decimal xo.x]xzx3 «-.3 each of STRT Xgs o
takes one of the values 0, 1, ey B Xg s 0 or 1 and if Xq = T, then

Xys Xy X3s ... are ali 0.
L O\

Subpose & coin is placed so

where a,b are the decimals G.a]aza3 ooy O.bab,b3 -+» respectively, If x is
not covered by this coin, then we have the conditions

{xD =1} v {x, éa]} v {x # by}

{’xo = 1} v {x~i eEa]} v {(x] = b.‘) -» (x2 >b2)},

{xg =1} v {x, <2} v {[(XT = b,) & (x2 = b,)] - (XS = ba)l,

{xo =1} v {x] <a]} v {[(x1 = bi) & (x2 = bz) & (x3 = b3)] = (x4 >b4)},

il

{xo =1} v {(x} al) h (xz <a2)} v {x] Pb]},
{xg = 1} v {(x] = a;) = ("‘2 Sap)h v {(x] = by) = (%, >b,)},
{xg =1} v “"1 = ay) > (x?_ Sa,)l v {[(x] =by) & (x2 =by)1 = (x4 >b3)},

and so on,

]

Repeat this for each coin and put together all the conditions on x we s0 obtain.
(The conditions are simpler if a <0 or b > 1.)  Next replace each inequality as
in the following example:

Replace (x4 = 6) by [(x4 =6) v (:v(4 =7) v (x4 =8) v (x& = 9)].

Then add to the conditions the following which ensure that each X; is given exactly
one value and that the special case of Xg = 1 is taken care of:

LR



(xg = 0} v (xg = 1),
(xg= 0) > 7 (x5 = 1),
(g = 1) =7 ({xg = 0),
(xg = 1} = (xy = 0),
(xg = 1) = (x; = 0),

i

(X1=0)V(X-|='|)V(X-I=2)V...V(x]=9),
(X1='0)"7‘[(X1=1)V (x] 2) ¥ wne W (X]=9)]‘,
(X,] =1) —*7[(’(1 0) v (xl Z) ¥ nen @ (x] = 9)}]1,

1]
1}

M v..v (x] = 8)1,
(x2 =-0) v (x2 =1) v (x2 =2) V... v (x2 = 9},
(‘xz = 0) —*7'{()‘2 =1) v (XZ = 2_) Voo V (xz = 9)],

b}

(X]_ = 9} = [(X] =0) v (x1

and so on.

We now have a. complete set of conditions on x and they are made up of &, v, =%, »
and the equations

(xo = 0), (XU = ])s (x] = 0}, (X] = 1), (x] = 2¥s e o (X] s 9)9 (XZ = 0}, (xz = 1Y woe

Replaces these equations by the sentence place-holders

Pys Pps Pgs Pg» Pgs -oos Pra» Prge Pige oo
respectively. The set of conditions becomes a set of wff's. Then finding an x to
satisfy the conditions is equivalent to assigning truth values, T or F, to the P;
so as to-give all the wff's the truth value T.

It follows from the compactness theorem that if we cannot find an uncovered point
x then there is a finite set of the conditions which cannot be satisfied. This finite
set must have come from some finite set of coins and these coins must cover the line.

Further reading

A. Basson and D. 0'Connor, Introduction to Symbolic Logic (University Tutorial Press,
1959).
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