H.S.C. CORNER BY TREVOR

There were once again some interesting problems in the 1982 H.S.C. Turning first to some extreme value problems, starting with the 3 unit paper:

<u>Problem 83.1.</u> Farmer Jones has to build a fence to enclose a 1200 m² area ABCD as in the diagram. Fencing costs \$3 per metre, but Farmer Smith has agreed to pay half the cost of fencing CD. What is the maximum amount Jones has to pay?

This is a variant of a very well-known optimisation problem, and is solved as follows:

Since the area of ABCD is 1200 m^2 , AB = CD = 1200/x m. Thus the cost \$y of fencing is given by

$$y = 3(AB + BC + AD) + \frac{3}{2}DC$$

= $6x + 5400/x$

$$\frac{dy}{dx} = 6 - 5400/x^2$$
; and $\frac{d^2y}{dx^2} = 10800/x^3 > 0$.

Thus y is minimum when $\frac{dy}{dx} = 0$, and then $x^2 = 900$, or x = 30 m. The minimum cost to Jones is \$360.

<u>Problem 83.2</u>. On the 4 unit paper, P is given to be a point on the curve $x^4 + y^4 = 1$, and it is required to prove that the distance of P from the origin is at most $2^{\frac{1}{4}}$.

This problem can be bludgeoned out using calculus, since, again $y^4 = 1 - x^4$, then the distance z of P from O is given by

$$w = z^2 = x^2 + (1 - x^4)^{\frac{1}{2}}$$

so that

$$\frac{dw}{dx} = 2x - \frac{2x^3}{(1-x^4)^{\frac{1}{2}}}; \quad \frac{d^2w}{dx^2} = 2 - \frac{6x^2}{(1-x^4)^{\frac{1}{2}}} + \frac{4x^6}{(1-x^4)^{3/2}}.$$

Now $\frac{dw}{dz} = 0$ when x = 0, or $x^2 = (1 - x^4)^{\frac{1}{2}}$, i.e. $2x^4 = 1$, so that the turning points of w are at x = 0, and $x = 2^{-\frac{1}{4}}$. When x = 0, $\frac{d^2w}{dz^2} > 0$, and when $x = 2^{-\frac{1}{4}}$, $\frac{d^2w}{dz^2} < 0$, and hence w is minimum when x = 0, and maximum when $x = 2^{-\frac{1}{4}}$, and w = 1, $2^{\frac{1}{2}}$ respectively. Since $w = z^2$, we find that $1 \le z \le 2^{\frac{1}{4}}$, and the result is proved.

There are two other neater, trickier ways, however.

(i) Note that
$$(x^2 - y^2)^2 \ge 0$$
, and hence $x^4 + y^4 \ge 2x^2y^2$. Hence $2x^2y^2 \le 1$.
But let $z^2 = x^2 + y^2$, then $z^4 = x^4 + y^4 + 2x^2y^2 = 1 + 2x^2y^2 \le 2$. Thus $z \le 2^{\frac{1}{4}}$.

(ii) Let
$$x = r \cos \theta$$
, $y = r \sin \theta$, and hence $z^2 = x^2 + y^2 = r^2$. But
$$x^4 + y^4 = r^4(\cos^4 \theta + \sin^4 \theta) = r^4[(\cos^2 \theta + \sin^2 \theta)^2 - 2 \sin^2 \theta \cos^2 \theta]$$

$$1 = r^4 (1 - \frac{1}{2} \sin^2 2\theta)$$

$$r^4 = \{1 - \frac{1}{2} \sin^2 2\theta\}^{-1}$$

But $0 \le \sin 2\theta \le 1$.

$$1 \ge 1 - \frac{1}{2} \sin^2 2\theta \ge \frac{1}{2}$$

$$1 \le r^4 \le 2$$

and the result follows!

<u>Problem 83.3.</u> Given that $a_n = \sqrt{(2 + a_{n-1})}$ for integers $n \ge 1$, and $a_0 = 1$, prove that, for $n \ge 1$, $\sqrt{2} < a_n < 2$.

Proof is by induction. Assume that

$$\sqrt{2} < a_n < 2$$
.

Now $a_{n+1} = \sqrt{(2+a_n)}$. Since $a_n > \sqrt{2}$, then $a_{n+1} > \sqrt{(2+\sqrt{2})} > \sqrt{2}$. Also, when $a_n < 2$, $a_{n+1} < \sqrt{(2+2)} = 2$. Thus $\sqrt{2} < a_{n+1} < 2$.

But $a_1 = \sqrt{3}$, and hence $\sqrt{2} < a_1 < 2$. Thus we have proved that if the result is true for n, then it is also true for n + 1. It is true for n = 1, and hence, by induction, for all $n \ge 1$.

This is a very simple application of proof by induction, but surprisingly few correct answers were received. Perhaps the slightly unfamiliar algebra tripped up a lot of students!

We finish this month's article by considering a trigonometric equation.

Problem 83.4. Find all x such that $\cos x + \sin x = 1 + \sin 2x$, and $0 \le x \le 2\pi$.

Solution: $\cos x + \sin x = 1 + 2 \sin x \cos x$ $= \cos^2 x + \sin^2 x + 2 \sin^2 x \cos x$

=
$$\cos^2 x + \sin^2 x + 2 \sin^2 x \cos x$$

= $(\cos x + \sin x)^2$.

Now when $u = u^2$, it follows that $u - u^2 = 0$, i.e. u(1 - u) = 0, so that u = 0,1. Thus <u>either</u> $\cos x + \sin x = 0$, <u>or</u> $\cos x + \sin x = 1$. [Many students missed one or the other of these solutions!]

- When $\cos x + \sin x = 0$, then $1 + \tan x = 0$, i.e. $\tan x = -1$, and $x = \frac{3\pi}{4} + n\pi, \quad n = 0, \pm 1, \pm 2 \quad etc. \quad This yields two solutions, \frac{3\pi}{4}, \frac{7\pi}{4}, \quad in the required range.$
- b) When $\cos x + \sin x = 1.$ Note that $\cos x + \sin x = \sqrt{2} \sin(x + \frac{\pi}{4})$

$$\sin(x + \frac{\pi}{4}) = \frac{1}{\sqrt{2}}$$

:
$$x + \frac{\pi}{4} = \frac{\pi}{4} + 2n\pi$$
, or $\frac{3\pi}{4} + 2n\pi$
: $x = 0$, 2π , and $\frac{\pi}{2}$

Thus the solutions in the required range are $[0, \frac{\pi}{2}, 2\pi, \frac{3\pi}{4}, \frac{7\pi}{4}]$.

Some candidates tried the formula $t = \tan \frac{x}{2}$. This leads to the correct solution after some very difficult algebra (try it for yourself). Quite a lot of students tried squaring both sides as follows

$$(\sin x + \cos x)^2 = (1 + \sin 2x)^2$$

:
$$\sin^2 x + \cos^2 x + 2 \sin x \cos x = (1 + \sin 2x)^2$$

:
$$1 + \sin 2x = (1 + \sin 2x)^2 = 1 + 2 \sin 2x + \sin^2 2x$$

$$\therefore \qquad \qquad \sin 2x + \sin^2 2x = 0$$

$$\sin 2x(1 + \sin 2x) = 0.$$

Hence $\sin 2x = 0$ or $\sin 2x = -1$.

$$x = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi, \frac{3\pi}{4}, \frac{7\pi}{4}. \tag{1}$$

There are too many solutions - what has gone wrong? Well, by squaring, we are also solving the equation

$$\sin x + \cos x = -(1 + 2 \sin 2x),$$

and we must check back which solution fits which equation. It is easy to check that the solutions of

$$\sin x + \cos x = 1 + 2 \sin 2x$$
 are $0, \frac{\pi}{2}, 2\pi, \frac{3\pi}{4}, \frac{7\pi}{4}$

and

$$\sin x + \cos x = -(1 + 2 \sin 2x)$$
 are $\pi, \frac{3\pi}{2}, \frac{3\pi}{4}, \frac{7\pi}{4}$.

The seven solutions in (1) are the union of those two sets.

