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THE 1983 SCHOOL MATHEMATICS COMPETITION

JUNIOR DIVISION

Ql. 6 positive whole numbers A,B,C,D,E and F satisfy A+ B =29, C+D = 45,
E+F =265 AC =36 and BE = 312. Find A,B,C,D,E and F. Show there
is only one solution to the equations.

So]utibn. The equation BE = 312 shows that B and E must be divisors of

312 = 23.3.13 and so they must come from the set {1, 2, 4, 8; 3p b, 12, 24,-13, 26,
52, 104, 39, 78, 156, 312}. The equations A+ B =29 and E+ F = 65 show that
B must be Tess than 29 and E must be less than 65. After this is taken into
account, the possible values for B and E are

B = 8 b 12 24 13 26
E = 39 be 26 13 24 12,

From the equation A + B = 29, the corresponding values of A are
A = 21 23 17 5 16 R

But the equation AC = 36 shows that A must divide 36 exactly, so the only
possible value for A is A = 3. This gives the unique solution

A=3, B=2, C=12, D=33, E-=12, F =53,

Q2. Write the numbers 1,0 or -1 in the squares of a 3 x 3 table and add -up the
numbers in each row and each column. Is it true that among the 6 numbers so
obtained there must be two which are equal? Prove your assertion.

Solution.  Suppose the six row and column sums are all different. The possible
values for these sums are -3, -2, -1, 0, 1, 2, 3, and our assumption means that six
of these seven numbers appear as row and column sums. The missing number must be
even, namely 0, 2 or -2. To see this, note that the sum of the three row sums is
equal to the sum of the three column sums, so the total of all the six row and. column
sums is even. Now some row or column adds to 3; say the first row contains three
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1's.  Also some row or column adds to -3;

say the second row contains three -1's. 1 1 1 3
The entries in the third row must now be

distinct to ensure that the column sums -1 ~1 -1 -3
are all different; say the last row is

-1, 0, 1. But, after all this, the third e 0 ! 0
row and the second column both sum to 0. -1 0 1

So the six row and column sums cannot all
- be different.

Q3. When x,y are any whole numbers, x # y denotes another whole number.
The operation # has the following properties:

(1) x#0
(i1) 0#y
(111)  ((x+ 1) #y) + (X # (y+ 1)) =3(x #y) - xy + 2y
for all «x,y.

x for all «x

-y forall y

Find the value of 19 # 83,

Solution.  First a little experimentation. From (i), x#0=x. From (iii),
with y = 0,

X#1=3(x#0)-{(x+1)#0=23x-(x+ 1) = 2x - 1.
Again, from (iii) with y = 1,
X#2=3(x#1)-(x+1)#1-x+2-= 3(2x - 1) - (2(x +1) - 1) - x +2=3x - 2,
After a bit more of this, we guess that
X#y=x(y+1) -y=xy+x-y,

It is then easy to verify that this formula for x # y does have the properties (i),
(ii) and (iii). These properties enable us to calculate x # 1, x # By X Ba aue

in turn, as already indicated, so x # y is uniquely determined by (i), (ii) and (iii).
Thus our guess is the only possible formula for x #y and

19 # 83 = 19 x 83 + 19 - 83 = 1513,
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Q4. In a certain boy's school everyone whojplayed either tennis or cricket either
played football or didn't play chess. Everyone who either played chess or did
not play cricket, either played tennis or did not play football. No-one who
played either football or cricket played both chess and tennis. Jim Adams
played chess. Which of the other games, if any, might he have played?

Solution.  Jim Adams played chess. Suppose he also played tennis. From the first
sentence of the problem, he must have played football. From the third sentence, he
did not play tennis. So Jim Adams did not play tennis. From the second sentence,
he did not play football. Finally from the first sentence, he did not play cricket.
He sounds 1ike a bit of a swot.

Q5. A new piece has been invented for use in the game of chess. This piece, the
duke, makes moves rather similar to those made by the knight. We call the ‘
square in the rth row and the sth column of the chess board (rys); a duke
situated in this square may move to any of the eight squares. (r=3, 52 1)
or (rx1, s *3) which are within the chess board. If the duke is in the
nearest left-hand corner, i.e. in square (1,1) and there are no other pieces
on the board is it possible to move it to any of the other corner squares - (1,8),

(8,8) or (8,1)? If so, state in each case the minimum number of moves,

Solution.  The duke starts in the bottom left-hand corner, a black square.
Thereafter, he must always move on black squares, so he cannot reach the white corner
squares (1,8) and (8,1). The sequence of moves

(1,1) ~ (4,2) > (7,3) > (8,6) + (5,7) ~ (8,8)

gets the duke to the square (8,8) 1in five moves. Note that he starts on a square
with odd coordinates, then after one move is on a square with even coordinates, then
after two moves is on a square with odd coordinates, and so on. So he must take an
odd number of moves to reach (8,8). It is easy to see that he cannot travel from
(1,1) to (8,8) in three moves. To change the first coordinate by 7 1in three
moves, we need to add 3,3 and 1 in turn. The corresponding changes in the second
coordinate are +1, #1 and 3, but these can never add to 7. So the minimum
number of moves to get from (1,1) to (8,8) is 5.
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Q6. 0 <a, <Za2 B <:an are natural numbers., Prove that their least common
multiple is at least na

l.

Solution. We are asked for the smallest least common multiple attached to the n
given numbers A5 vees Ao Turning this around, we can start with the least common
multiple, say N, and Took for the n biggest divisors of N which will correspond

to the numbers Qs A g5 oes 3y Now the largest values we can assign to these
divisors are

ay = N/1, a _, =N/2, 8pop = N3y ooy g = N/n.

In general, if 1, 2, 3, ..., n do not all divide N, then 2 < N/n, that is

N >=na1. S0 the Teast common multiple of the numbers 813 e @ is at least naj.

SENIOR DIVISION

Q1. The surface of a cylinder consists of one curved and 2 flat sections whereas that
of a cone consists of one curved and one flat section, Suppose a right cone and
a cylinder have a common circular face and the vertex of the cone is the centre
of the opposite face of the cylinder. Suppose the ratio of their surface areas
is 7 : 4 . Find the ratio of the length of the cylinder to its base radius.

Solution.  Suppose the circular base of the cone and cylinder has radius r and the
height of each is h, The surface area of the cylinder is 2mwrh + 2wr2 and the

surface aréa.of the cone is nrdrz * h2 + nrz. The ratio of these two quantities
s ool 86

2mrh + 27 = A

nrJrz + hz + nrz

s this becomes

4(2x + 2) = 7(Jﬁ + x? + 1),

In terms of x =

S|z

that is

8x + 1 =7/1 + x2

(continued over)
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Squaring both sides gives the quadratic
16x2 + 16x = 48 = (3x - 4)(5x + 12) = O.
So x = h/r = 4/3.

Q2. Let ABCD be a convex quadrilateral, and draw equilateral triangTes ABM, CDP,
BCN, ADQ to the sides, the first two outwards, the othér two inwards. Prove
‘that MN = AC. What can you say about the quadrilateral MNPQ?

Solution. The triangles ABM and BCN are

shown in the figure. In triangles ABC and

MBN, AB = MB (being sides of equilateral

triangle ABM), BC = BN (being sides of

equilateral triangle BCN) and LABC =ZMBN M
(both being '60° plus LABN). So triangles

ABC and MBN are congruent and AC = MN.

Similarly AC = PG and BD = NP = MQ.

The quadrilateral MNPQ has pairs of opposite

sides equal, so it is a parallelogram.

Q3. Let M be the set of real numbers of the form (m + n)//mE + nz, where m and
n are positive integers. Prove that for every pair x,y 1in M with X <y,
there exists a z in M such that x <z <y.

: /R(e,f)

Solution. ~There are many ways to solve this /

problem. The formula defining M may remind 4

you of the cosine rule. Applying the cosine

rule to the triangle POI 4n the figure gives

a+b
CO0S 6 = —FF——» .
Ve /az + b2
Alternatively, 0
cos 6 = cos(LPOx - 45°)

cos(LPOx)cos 45° + sin(LPOx)sin 45°

b 1, & A4,
/az + b2 V2 i /a2 + b2 " V2

(continued over)
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Now iet x = {a + b)/-ag % hzr and y = {c + d}fyéi +d”  be two numbers in M with
We can assume a<b and c <d, sc the corresponding points fall as in the

diagram with cos LP0I < cos LQDI, that is ZPOI >LQ0I. If R = (e,f) is any

point with integer coordinates in the sector formed by producing OP and 00, then

cos LROI lies between cos £P0I and cos LQ0I, whence (& + /V fz lies
between x and y, as required. One possible choice for R 1is the point
(a+c, b+d); in this case OPRQ is a parallelogram,

Q4. Llet f(x) = x3'+~ax2,+ bx + ¢ be a cubic polynomial with integer coefficients
a8, b and c. Suppose that one root of the equation f(x) = 0 s equal to the
product of the other. twe roots.  Show that 2f(-1) ds an integer multiple of

(1) + f(-1) - 2f(0) - 2.

Solution, Let the roots of the: cu&?c be o,8 and y and suppose vy = aB. From
the Tormulae re]at1ng the roots afid the coefficients of the cubic,

r-a=a+8+'y-a+\8+or.8

2 2

b=oaBf + By +vyo=aB + o™ + o B

lThus |
f(1) + f(-1) - 2f(0) - 2 = 2(a - 1) =-2(1 + o+ B8 + ap)
and

i) < B U ® @ = b % ) 2 4 ol + o2

-2{1+a+B+o0B+af+ap

= 2(1 +a+ B+ aB)(l + ap).

If we can show that 1 + aB 1is an integer, then we will have shown that 2f(-1) is
an integer multiple of (1) + f(-1) - 2f(0) - 2, as required. Now, from the above
equations,

c2=-1+a-b+e)_ c-b : _¢c-b
This means that oB 1is a rational number, say oB = p/q in lowest terms. On the
other hand, a282 = - C, SO p2 = - cqz. But this dmplies that q2 divides pz,

whence g divides p, so that q must be equal to 1 since p/q was in its lowest

terms.  So, in fact, aB = p/1 is an integer and so is 1 + aB. This completes the
proof,
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Q5. The function fd(x,y,z) where d is a positive integer, is the sum of all the

distinct products xaybzc where a,b,c are positive integers with a +b + ¢ = d.

For example, fl(x,y,z) =x+y+2, and

fz(x,_y,z) = )(2 + yz + 22 + yz + XZ * XYy.

If x=1 and y>0, z>0 show that
fd+1(xs.VsZ) >fd(xs.5’sz)-
If x=1, y=1/3 and z =2/5 show that fd(x,w,z) < 2% for all d.

Solution. Suppose x =1, y>0 and z > 0. Then every term of fd+1(x,y,z) is

positive. If xaybzc is a term of fd(x,y,z),' then xa+1ybzC is a term of

fd+1(x,y,z). There are also other terms such as yd+l_ So

1b_c
fo0y,.2) > 5 KNP0 = xf (x,y.2) = fylxy.2)
Gl atb+c=d d g .
Now suppose x =1, y=1/3 and z =2/5, Since X = |
fq(xy,2) = L xaybzC = I ybzC
atbt+c=d b+csd
< I ybzC = (Z yb)( A
b,c=0 b=0 c=0
LS. e 1
l-y°1-12
=5
2

Q6. We are given a function f with the property that, for all real numbers X,y
f(x +y) = f(x) + fly).

Given ¢ # 0 show how to choose M so that g{x) = f(x) - Mx has period c.
(This means g(x + c) = g(x) for all x.) Prove

(1) if f s bounded then f s identically zero
(ii) if f 1is bounded on some interval then f(x) = Mx for some M.

Note that a function is bounded if there is a constant k with -k <f(x) <k
for all x.



Solution.

From the functional equation for f,

gx +c) = f(x+c)-Mx+c)=Ff(x)+ flc) - Mx - Mc = g(x) + f(c) - Mc.

So we can arrange for g{x + c) = g(x) by choosing M = f(c)/c.

(1)

Suppose f is bounded, but f(a), say, is non-zero. Then

f(2a) = f(a + a) = 2f(a), f(3a) = f(2a + a) = f(2a) + f(a) = 3f(a), and,
in general, f(na) = nf{a) for any integer n. Since f(a) # 0, we can
make f(na) = nf(a) as large as we like by choosing a sufficiently large
integer n. This contradicts the assumpt1on that f(x) 1is bounded. So
f must be identically zero.

Now suppose f{(x) 1is bounded on the interval a <x <b. Construct

g(x) = f(x) - Mx to have period b - a, and note that g(x) 1is also
bounded on the interval a <x <b. HNow g(x) satisfies the functional
equation g(x + y) = g(x) + g(y) and g(x) is bounded for all x because

it is periodic and it is bounded over the period a <x <b. So, by (i),

g(x) s identically zero, and thus f(x) = Mx.

Do TOU THINK rl PRETEND I DO
IN UHNIONS OF BUT IN FACT 1
SETS WHEN THINK OF APPLES
DOING ADDITION? AND ORANGES .

Andrejs Dunkels
Department of Mathewatics
University of Luled
Sweden
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