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SOLUT

Bl

ONS TO PROBLEMS FROM VOLUME 18, NUMBER 3

Q. 539. From the set of whole numbers {0, 1, 2, <.05 999999839} two are selected
at random. What is the probability that they differ by a multiple of 100007

Solution. However the first number is chosen it can be expressed in the form
10000 a + b where a,b are non-negative integers with 0 <b < 10000, The second
choice differs from this by a multiple of 10000 if it is given by 10000 ¢ + b

where ¢ is any non negative integer less than 105 except a., That is, of the

109 - 1. numbers remaining after the first choice, there are 105 = 1 which differ
5
from it by a muitiple of 10000. Thus the required probability is 58 1ﬁ (This
107 -1 '

is very close to Tﬁ%ﬁﬁ' which would be the exact answer if one interprets the

question to allow the same number to be selected for both choices.)

Q. 540. Three married couples went shopping.  Each of the six bought several
articles and paid for each article a number of cents equal to the number he or she
bought. (e.g. 7 articles each costing 7 cents would be a possibility.) Each
women spent 75 cents more than her husband. Cecil spent 21 cents more than Mary,
but Leah spent $14.19 more than albert. The other two names were Nora and Brad.
Who was married to whom?

Solution.  Suppose a wife buys x articles, and her husband y articles. Then

75 = x2 - y2 = (x = y)(x +y). There are three factorisations of 75 with the
second factor larger viz 1 x 75, 3 x 25, and 5 x 15. Solving x -y =1,

x+y=75 gives x =38, y=237. The other factorisations give similarly
x=14, y=11 and x =10, y =5,

Hence the number of cents spent by the three couples were:-

382 = 1444, 372 = 1369,
142 = 196, 112 = 121,
10% = 100, 52 = 25,
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From the given information it is clear that Cecil spent 121 cents and Mary 100
cents, and that Leah spent 1444 cents and Albert 25 cents. Hence the couples were
Leah and Brad, Nora and Cecil, Mary and Albert.

Q. 541. Andrew, Bud and Charles were seated one behind the other, Andrew at the
back, Charles in front. From a bag. containing 3 black hats and 2 white hats (all
three were aware of its contents) one hat was placed on the-head of each boy by a
fourth person, who took care that no one saw the colour of the hat p1aced on his own
head.

Andrew said "I cannot tell what colour hat is on my head".

Then Bud (who was not permitted to turn to look at Andrew) made the same

statement. Would it be possible for Charles to deduce the colour of the hat on his
head?

Solution.  Obviously, if Andrew had been able to see ? white hats he would have known
that the hat he wore was black. So if Bud saw a white hat on Charles, he would have
been able to argue that his hat must be black. Since he came to no such conclusion,
Charles is able to deduce that his hat must be black (or else that Bud, though no
doubt a worthy citizen in other respects, is solid concrete between the ears).

Q. 542.  Suppose one's only drawing instrument is an ungraduated ruler with two
straight parallel edges. One can use this instrument:

a) to draw a line through two given (or already constructed) points.,

b) to draw a line parallel to a given line at a d1stance from it equal to the
width of the ruler

¢)  to draw two parallel lines, one through each of two given points whose
distance apart is at least equal to the width of the ruler.

Show how to use this instrument to
1. trisect a line segment of length greater than the width of the ruler.

2. trisect a line segment of length less than the width of the ruler.
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Solution. 1. Let AB be the given segment. y ' .
Using operation ¢) construct parallel lines ///

X2 and PR passing through A and B Y &
respectively. Using b) construct lines

XP and QY parallel to AB, then ZR

parallel to YQ. Join RX intersecting ! 8

AB at T. Then T 1ds a point of trisection );éi///r j///
of AB. | _

(Proof.  The paraliellograms XPBA, ABQY, and : i

YQRZ are obviously congruent rhombuses. The

5 1m4 AT:.)S.A_z_]'_ M.:.].'_
triangles AXAT and AXZR are similar, whence TREXT S 3 Hence 5 3.)
P 2. Using b) draw a Tine CD  parallel -to

AB. Either by using 1 with CD sufficiently
far apart, or otherwise, construct three

4 ,% B points on this line with Q a point of
trisection of CD. Construct lines CA
and DB intersecting at P, then PU
intersection AB at T. Then T is a
point of trisection of AB.

c ", D (Proof. In the similar triangles APAT

and APCU %%-= %%u In the similar triangle

AB _ PA AT _ AB _o. 1
APAB and APCD oo = pc - Thus U = o whence 78 = D 3.)

Q. 543. - Six different Tengths are given, such that they can be taken in any order
as the edges of a tetrahedron ABCD.

How many non-congruent tetrahedra can be constructed in this way? {Count
"mirror image" tetrahedra as non-congruent.)

Solution. There are altogether 6! = 720 ways of assigning the six given lengths to
the edges AB, AC, AD, BC, CD, and BD.

Once one possible tetrahedron has been constructed, it can be rotated into 12
different positions when identifying its sides with those of ABCD (for each of the
4 vertices which can be identified with A, there are three positions into which it

(eontinued over)

21



can be rotated to identify the opposite face with the triangle BCD.) Hence the
720 assignments of lengths to the sides of ABCD fall into 60 classes each
containing 12 congruent tetrahedra. [For each of these 60 classes, there is
another of them which is its mirror image; if these were regarded as congruent
tetrahedra, the answer to the question would be 30 instead of 60.]

Q. 544. (i) Given an 8 x 8 chessboard, what is the largest number of bishops
which can be placed on the board so that no bishop attacks any other?

(i1)  In how many different ways can this maximum number of bishops be
placed on the board? (A bishop moves diagonally in any direction, any number of
squares.)

Solution. (i) One can place up to 14 bishops on the board so that none attacks
another.  One way to do this is by placing 8 along one edge of the board and 6
a]ong the opposite edge (its corner squares cannot be used). If the board has a
white square in the lower R.H. corner, there are 7 diagonals of black squares
parallel to the long diagonal from the Tower L.H. corner to the upper R.H. corner.
If more than 7 bishops.were on black squares, at least one of these diagonals must
contain 2 ‘bishops, which attack each other. Similarly at most 7 bishops can be
placed on the white squares.  This proves that 14 is the largest possible number.

(1)  We shall show that there are

24 = 16 different ways of placing 7 non-

attacking bishops on black squares, and
similarly 16 ways of placing 7 bishops
on white squares, yielding 16 x 16 = 256
different ways altogether of placing all
14 bishops.

Let the board be tilted through 45°
with a black square at the bottom corner.
There are now 7 vertical columns and 8

horizontal rows of black squares. A two
co-ordinate label, such as (5,6), identifies
the black square in the 5th vertical column
counting from the left and the 6th horizontal row counting from the bottom, (on the

(continued over)
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figure (5,6) is the solidly shaded square),

The seven squares for placing non-attacking bishops must have labels
(stl-)s (2’x2)s (Bsxs)s (49)(4)3 (Esxs)a (6:X6) and (79X7)

where no two of X1s Xos caes Xy are equal. Since X9 is either 4 or 5 (there
are only 2 squares in the first cofumn) and the same is true for X7 there are
Jjust 2 ways of chbosing Xq and X3 viz either Xy = 4, Xy = 5 or Xy = By

X7 = 4. That leaves only 3 and 6 as available choices for Xo and Xg
again there are two ways of choosing the pair. Similarly Xq and Xg have now
to bé chosen either as Xg = 25 X = 7 or Xg = 48 Xg = 2. Finally Xg must
be chosen to be either 1 or 8 since all other row numbers have been used up,

Hence, as asserted above, there are 2 x 2 x 2 x 2 ways of placing the 7 b1shops

on the black squares.

Q. 545. The squares on an n x n chesshoard are to be coloured red, yellow, b]ue
or green in such a way that squares with a common edge or corner are g1ven different
colours. Is it possible to do this in such a way that every row or co]umn contains
at Teast one square of each colour?

solution. If in some row squares of each of the 4 colours occur, we can certainly
find 3 consecutive squares in the row bearing different colours 1, 2, and 3

say. Now the square vertically above (or below) that coloured 2 must be coloured
with the fourth colour, 4, and then the

colours of its Left and Right neighbours 1 .2 ;.
are forced to be 3 and 1 respectively. 3 1

Now the three colours in the next row i 1 2 3
up (or down) are similarly determined to Sk Ll — .

be from Teft to right ... 1, 2, 3,
i.e. identical with those of the first row. There is thus no choice in completing
the colouring of these three columns - in the outer two the squares are coloured

alternatively 1 and 3; in the middle one the squares are coloured alternatively
2 and 4,

(eontinued over)
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Thus if any row contains all four colours it is impossible that the same is
true for all the columns. In fact, no column can contain more than 2 colours,

since once any column is so coloured, a neighbouring cclumn can have only the
other two colours,

Q. 546. The function f(n) is defined for all positive integers n and takes on
non-negative integer values. Also, for all m,n,

f(m+n) = f(m) - f(n) =0 or 1;
f{2) = 0, f(3) >0, and f(9999) = 3333.
Determine f(1982).

Solution. "From 0 = f(2) = f(1) + f(1) + (0 or 1) we deduce that f(1) = 0.
From 0 < f(3) = f(1) + f(2) + (0 or 1) =0+ 0+ (0 or 1) we deduce that
f(3) = 1,

We now prove by induction that
for every k, f(3k) >k. (1)
This has already been established for k = 1. Assuming it is true when k = k
then f(3(k0 + 1)) = f(3k0) + f(3) + (0 or 1)
Zkgt 1+ (0 or 1)

0!

>=k0 + 1.

Thus the assertion (1) remains true for k = k0 + 1 if it is true at k = kO’ so it
is true for all k.

The working in the proof of (1) shows further that if f(3k0) >-kO then
f(3(k0 + 1)) >-k0 + 1. It follows immediately that if f(3£) = £ for some value of

£, then f(3k) = k for all values of k Tless then £. In particular, since
f(3 x 3333) = 3333, we have f(1980) = f(3 x 660) = 660,

and also f(3 x 1982) = 1982, (2)

Now f(1982) = f(1980) + f(2) + (0 or 1)

660 + 0 + (0 or 1) = 660 or 661,

)

It remains to determine which of these two possible answers is the correct one.

feontinued over)
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If f(1982) = 661 then f(3964) = f(1982) + £(1982) + (0 or 1)
= 1322,

and (3964 + 1982) = f(3964) + f(1982) > 1322 + 661 = 1983 i.e. (3 x 1982) > 1982,
Since this contradicts (2) it is impossible that f(1982) = 661. We must have
£(1982) = 660.

Q. 547. Consider the infinite sequences {xn} of positive real numbers with the
following properties:

= i = z A
Xq 1 and for all i =20, .x1+1<x1.

a) Prove that for every such sequence, there is an n =1 such that

Xg X% Xﬁ-1
;(—-+;_+‘.‘+-X—->3.999.
1 2 n

b)  Find such a sequence for which

Xg x% Xﬁ-l
-)—(-—+;(—-+ + - <4 for all n.
1 2 n

Solution. a) We shall refer to a sequence {an} with the given properties as a

DP1 sequence (decreasing, positive, first term = 1), and the expression

xg X% Xﬁ-1
—t -+ ., + will be denoted by E .
X X n
1 2 n
1 %
Note that E2>q+ X1 (since Xg =1 and ;‘—é-;l)
(Xl = 1)2
= +2 22,
Ay

and that E >E . >E ,>...>E,>2 forevery n >2 and every DP1 sequence. (1)

X
If {xn} is a DP1 sequence, so is {Xr;} where x! = td for m=0;1:25664 s

xt2oxr? x! g
We let Er'] denote -f(')— +x—1é- ¥ s +-—nx—'r'l.
1 n
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T i P R ST
XXy = X3 N+l Xq n+l Xy 4 R 1
E2
This yields E! 4——'}{—1— for every n. Hence if {x } is a DPl sequence such that
2
k

every E ., <k, then {xr‘]} is another DP1 sequence with every Er S

Repeating the process we could then find yet another DP1 sequence

2 2
' Xr'1+1‘ X2 [ﬁl\"] k22
{x;} where x'r" = =7 = —— for whieh every E;‘l < 2 = 77 5 and in fact
1 2 4
after r repetitions we would have a DP1 sequence
(r-1)
{ o (7] (r) _*nt1 " _ Fnek
[{xn } where x '/ = e

2"}
k} k  (Easy check by induction on r).

with the property that every Ef}r) < [ﬁ'

If k= 3.999, we have (%—) <1 so that for a large enough value of r we

have constructed a DP1 sequence for which En <%— . 3.999 <2 for every n.

Since this contradicts (1), it follows that there exists no DP1 sequence for

which En < 3.999 for every n. Q.E.D.
2
En-1 _ 4
b) If En <4 for every n, then Er'] <T<—4—- = 4 for every n. The
working of (a) shows that 1lim E, =4 and similarly Tlim E"1 = 4,
n-o n-o _
Letting n tend to infinity in E' = BT . § yields 4 = 1 L
nooxg ntl X X1 X1
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" . _1 o st TR !=_l_-_ VR v o= oyl ::._1_
which solves to give X1 = o Similarly X1 ® 5. giving Xg = Xp.0 % 22.
We could continue this; but it is simpler to merely make the obvious guess that
the sequence Ry = jﬁ- n=20,1, 2, ... 1is the one we are looking for, without
, :

proving that there is no other possibility.  For this DP1 sequence we have

1) n
En . ngl M ¥ nél 2[ -[%}] (

k=0 —L— k=0 1

by the formula for summing a G.P.) 1.e.
ok +1 Leg

2:
g

En <4 for every n,

Q. 548. Prove that if n is a positive “integer such ‘that the equation

x3 - 3xy2 + y3 =n

has a solution in integers (x,¥), then it has at least three suchfso]upions.
Show that the equation has no solution in integers when .n = 2891.

Solution. Note that

xS - 3xy2 + y3 = (y - x)3 - 3x2y + 2x5 = (y - x)3 - 3x2(y - X) T x3
= x3 - 3xv? 4+ y8
where X =y «x, Y =-x (1)

Hence if (x,y) = (xl,yl) is one solution in integers of the equation, another
solution is (x2, y2) = (yl - Xps - xl). The same transformation performed on
(xz,yz) gives yet another solution (x3,y3) = (y2 - Xps = xz) = (= Y1s Xq - yl).

One can check immediately that performing the transformation (1) on (x3,y3) returns

us to the original solution (Xl’yl)'

It can be verified easily that when the transformation (1) is performed it is
not true that X = x, Y =y except when x = y = 0. It follows that the three

solutions when n s a positive integer are all different.

Observe that 2981 = 72 x 69.  Note first that:- There is no solution of

(continued over)
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x3 = Exyz + y3 = 2891 for which either x or y 1is a multiple of 7. (2}

3o 2891 - x3 + 3xy2, a muitiple of 7. Hence

3 2 . ysg but not of 2891, a

(Proof.  Suppose 7|x. Then y
71y.  But then 73 s a factor of x” - 3xy
contradiction.)

One readily checks that {7k + r)3 = 7(49k3 + 21k2r L 3kr2) + r3 leaves the
same remainder on division by 7 as r3. When r =1, 2, 3, 4, 5, or 6 the
remainder when r3 is divided by 7 s 1,1, 6, 1, 6, énd 6 respectively.

Now suppose there exists a solution (x,y) = (xl,yl) of X3 - 3x_y2 + y3 = 2891,

Then, of the three solutions (x,y) = (xl’yl)’ {X,y) = (y1 - Xy - xl),
-(x{y) = (- Yy %Xq - yl) there must always be at least one for which one of x3,y3
Teaves remainder 1, the other remainder 6, on division by 7.

% and y? both leave the same remainder the same is true of (- Xq

)3

(Proof. If «x ik

)3. and (y1 -.xl)3 must Teave remainders

and (- ¥q But then since (x1 - Y7

1 and 6, the assertion must be true for either the second or third pair).

For such a solution (x,y) of the equation we have x3 + y3 exceeds a multiple
of 7 by 1+ 6, i.e. it is a multiple of 7. Then 3xy2 = x3 + y3 - 2891 1is also
a multiple of 7. But this is impossible, since we have already shown that neither

X nor y can be a multiple of 7.

Because of this contradiction, we can deduce that no solution exists.

Q. 549. The diagonals AC and CE of the regular hexagon ABCDEF are divided by
the inner points M and N, respectively, so that

AM _ CN

-..o—--—-=r

AC ~ CE

Determine r if B, M, and N are collinear.
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Solution. Let the side length be 1.
Then AC = CE = 2 cos 30° = /T3

\ [BCE = 90; AM = CN = v/ r,
Let |CBN = 8. Then |[BMA = & + 30°;
D |ABM = 120° - 6; and CN = BC tan 6 = 1 tan0;

The sine rule for AABM gives
AM - AB

sin |[ABM  sin [ABM

tan 6 & 1 :
sin(120° - 8) sin(e + 30°)

sin 6(sin & cos 30° + cos © sin 30°) = cos 6(sin 120° cos 6 - cos 120° sin 6)

2 o + %—sin ® cos 0 = %? cos2 6 + %—sin 0 cos 6,

s1'n2 p = cos2 6. As 06 1is acute, we have 6 = 45°,A and AM = CN = 1 tan 45° =1,

%; sin

r = ~ 577,

1
/3

Q. 550. Let S be a square with sides of length 100 and let L be a path within
S which does not meet itself and which is composed of linear segments

AOAl’ AlAZ’ ke An-lAn with AO # An. Suppose that for every point P of the

boundary of S there is a point of L at a distance from P not greater than 1/2.

Prove that there are two points X and Y in L such that the distance between X
and Y s not smaller than 198.

Solution. Traverse L from A0 to An' Let Ql be the first point reached such
that the distance from Ql to a corner, B, of the square is < the distance from
B to any other point of L (i.e. Q1 is a “closest point" of L to B). Similarly

let 02 be the next point of L reached which is a “closest point" of L to a

different corner, C, of the square. Let D be a third corner of the square such
that BD 1is an edge; let 03 be a (the) nearest point of L to D. Denote by L'
the portion AO - Q2 of L, and by L" the remaining portion 02 - An; note that

{eontinued over)
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Q3 is a point of L®.

If P 4s any point on BD, x wunits from B, Tlet d*(x) be the shortest
distance from P to a point of L', and d"(x) the shortest distance frem P to
a point of L. A small change in x causes only small changes in d'(x) and
d"(x), obviously, i.e. d'(x) and d"(x) vary continuously as x is increased
from 0 to 100. At x =0 d'(0) <d"(0) (since the closest point of L to
B is Ql which 1ies on L'); and at x = 100 we have d'(100) = d"(100) (since
Q3 1ies on L"}. It is evident that there must exist some value Xg in [0, 100]
for which d'(xo) = d"(xo). i.e. some point K in BD which is equidistant from
L' and L". (It is not necessary to prove that there is only one such point K,
though this is true because L does not intersect itself.)

Let X,Y be the points of L' and L"
8 D respectively which are closest to K.
€, then KX = KY <% and XY <KX + KY <1,
The portion of L  between X and Y

passes through 02 so its length is not
less than XQ2 + YQZ'

Since
KX + XQ2 + 202(3 + 02Y + YK =2 2KC = 2BC = 200

c LG with KX, KY and Q,C all <% we have
XQ, + ¥Q, 200 - 4 x ) = 198, and the
proof is complete.

PROBLEM SOLVERS
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the arguments for the difficult Olympiad problems 546 and 547 were judged to be
incomplete, the contributions were still quite meritorious). A. Jenkins (North Sydney
Boys High School) 541, 542 (excellent solutions)
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