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MINIMUM ROADWAY PROBLEMS
BY
CYRIL ISENBERG

1. Introduction

One of the mathematical results that one encounters early in life is that conce-
rning the shortest path joining two points. It is, of course, the straight Tline.
Any other path will have a greater length. If we attempt to generalize this
result, in order to determine the minimum path connecting three, or four, or
more points, the problem becomes rapidly more complicated. These problems,
however, are important in such applications as the construction of roadways
connecting a number of towns, and pipélinesor cables joining a number of centres.
In all these cases the cost of construction is proportional to the length, so
minimizing the length also minimizes the cost.

Let us restrict the discussion to the construction of roadways. Can we
derive any properties of minimum roadway configurations, linking a number of
towns, before attempting the more difficult task of finding complete solutions?
If we consider a number of towns connected by some roadway system (see Figure
1(a)) it is clear that the minimum roadway configuration cannot have any curved-
roads, as any curved section of road can be replaced by a shorter straight-line
length of road. When all the curved roads are replaced by straight-line roads,
we obtain the configuration shown in Figure 1(b).

2. Three-town problems
In order to gain further insight into the general problem, let us examine

the three-town problems. The simplest problem would seem to occur when all the
towns, A, B and C, say, are arranged at the vertices of an equilateral triangle
(see Figure 2) with sides of length d. The minimum roadway system might be
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Figure 1. Roadway configurations; the straight-line road system has the shorter
length.

A
/1
/
L L b
£ 5 & B
Figure 2. Three towns arranged at the Figure 3. A roadway joining A, B
vertices of an equilateral triangle. and ¢ with S along BC.

along two sides - with L = 2d - or along three straight-line roads meeting at
a point § with angles between the rcads of «, B8, v, as indicated in Figure 2
- or one side and one road joining the opposite vertex to that side, as in

Figure 3. The minimum length in this case is clearly when S is at Sa the



midpoint of. ¢B. This gives L = (1 + %/3)d = (1.866...)d, which is clearly
shorter than the wo-side solution with L = 2d.
We might now look at a three-road system with S on 45, as indicated in

Figure 4. If S5, = then the total length I of the roadway is given by

L = AS + 2CS, (1)
= (5d/T - z) + 2/xT + 5d? . (2)

This will be minimized when db/dz =0, that is, when

1
=2

0 = -1+ 2z(x® + %d*) 7, (3)
or

X

1/6V3d. _ (4)

Consequently a = 120° , and, by symmetry, y =8 = 120°. The value of this
minimum is, from (2), v3d.

Figure 4. A roadway configuration with Figure 5. Three towns arranged at the
5 along AS, vertices of an isosceles
right-angled triangle.



This argument does not prove that this is the minimum vroadway, but indicates
that this may well be the case. It is certainly shorter than any system with S
on the boundary or at any other point on the bisector of an angle of the trian-
gle. Further analysis will be needed to prove that it is the true minimum.

Before attempting a general proof for the three-town problems, let us examine
a further example. Consider the towns at the corners of an isosceles right-
angled triangle with sides of length d and v2d, as in Figure 5. Similar
arguments to those presented for the equilateral triangle would indicate that the
position of S might be along the bisector os, of ¢ where S, is the mid-
point of AB. We can obtain a general expression for the total length L{x) of
the roadway for & along CSé as a function of a = SSC‘ and minimize L with
respect to x. Again we obtain y =a =8 = 1200, the total Tength of roadway
being %(v6 + v2). ,

At this stage we might conjecture that, for any arrangement of three towns,
the minimum path has this 120° property. We shall now show that this is indeed
the case, using a geometrical proof that was brought to my attention by Mr. R.D.
Nelson of Ampleforth College, York (see reference 2).

Consider any triangle ABC with a 'roadway' system of length L formed by
three 1ines meeting at S, as in Figure 6. Now rotate the shaded triangle
anticlockwise about ¢ through 60°, so that 4 s now at A’ and S' 1is now
at S'. Then 8'c =5c and S'¢s = 60°, so triangle (€S8S! s an equilateral
triangle. Also,

L =45 % BS + €3 = 4'8" + 857 + 9B (5)

as, by definition, 4's' = 43 and S!S = 8C, ¢S'S being an equilateral triangle.
Now A4’ and B are fixed points. As S 1is varied,

L=A'S"+ 8'S! + SB

will:be minimized when A'B is straight line (see Figure 7). In Figure 7,
@ = CSB and S'SB is a straight line, so

o = 180° - 60° = 120° | (6)

Also, using the notation in Figure 7,

L9 1



g =B, by definition,
= 180° - 600, as 4'B is a straight line,
_ 0
= 120~. (7)

Figure 6. CAS rotated through 60° Figure 7. The minimum-path position
about C. . ' for S.

Hence, from (6) and (7),
y = 360° - o - B - 120°. (8)

Thus the 120° angles are a general property of the minimum path connecting 4, B
and C.

These results can be demonstrated experimentally by drilling three small
holes in a horizontal wooden table. They represent the three points A, B and
C. Three equal weights mg are now hung below the holes from strings that are
tied together on the table, the height of the weights above the ground being hr
hy and ha' The three weights will come to equilibrium when their total
potential energy is minimized. This will occur when mg(h1 T hy ¥ h3) is mini-
mized, that is, when (h1 + h2 + h3) is minimized. This will clearly occur
when the sum of the three horizontal lengths of string on the table is minimized.
So the final equilibrium configuration of the horizontal strings is one in which
their total length is minimized. Also, as the tension in each string is mg,
the equilibrium configuration occurs when pairs of adjacent strings intersect at
120°.

These proofs, however, are only valid provided that the angles of the
triangle are less than or equal to 1200, when S 1lies inside or on the triangle.



For triangles with an angle equal to 120°, the minimum path length is the sum of
the two shortest sides of the triangle, i.e. those adjacent to the largest, angle.
This Tatter result can also be proved to hold for triangles with an angle great-
er than 120°, Summarizing, a triangle with no angle greater than 120° has a
minimum path formed by three lines meeting at a point S 1inside the triangle at
120°. A1l other triangles have a minimum path formed by the two sides adjacent
to the largest angle of the triangle.

3. Many-town problems

We can show, using the result for the minimum roadway joining three towns,
that the general minimum roadway connecting a number of towns can only have road-
way intersections with three roads, each road making an angle of 120° with the
adjacent roads.

If the general minimum roadway consisted of a roadway intersection with more
than three roads, as in Figure 8(a), one could, using the results for three
points, find a roadway configuration with a smaller length. For example, in
Figure 8(b), using points P and @ 1in triangle Pog, with 500 < 120°, we
can form a roadway configuration with a small length by replacing the full lines
PO and Q0 by the broken lines, PS, 50 and 5@, meeting at 120°, Repeating
this procedure with all the roads meeting at 0, we finally obtain only three

Figure 8(a). Intersection point with Figure 8(b). A roadway with a
more than three roads. shorter Tength than
“that in Figure 8(a).



roads meeting with angles of 120°,

These minimum-path, or roadway, problems were investigated during the nine-
teenth century by the Swiss mathematician Jacob Steiner (Figure 9). The points
at the three-way intersection are often known as Steiner points.

‘Let us examine the four-town problem with the four towns arranged in a square
array with sides of length d(Figure 10(a)). On the grounds of symmetry, we
might be tempted to guess that the minimum roadway has an X-configuration, with
length 2/2d4. However, we know that the roadway intersection must consist of
three roads meeting at 120°, Consequently, the only possible solutions are the
two shown in Figure 10(b) by the full and broken lines with angles 120°, These
give roadways of length (1 + /3)d = (2.75..)d, which is shorter than the X-
configuration of length 2/2d = (2.82...)d. Tt is of interest to investigate how
the minimum roadway configurations alter when the towns are arranged in a rect-
angular array with AD =d and 4B = (1 + wyd. If w 1is increased from 0 the
two configurations in Figure 11 will have different lengths, one being a local
minimum and the other an absolute minimum. The length of the full road is

Figure 9. Jacob Steiner (1796 - 1863)
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Figure 10. (a) The square array of four towns.(b) The minimum roadway configur-

ations.
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Figure 11. The two minimum roadways for a Figure 12. The configuration with
rectangular array of towns. the critical value of

w= (V3 - 1)d.

(1 + /3 + w)d, and that of the broken road (1 + /3(1 + w))d. Consequently the
broken road is the local minimum. As w 1s increased, the two three-way broken
intersections will eventually meet, leading to a four-way intersection at 0.

in Figure 11. When this occurs w = /3 - 1, and the configuratﬁon wiTl no long-
er be a minimum configuration as we can form a roadway with a shorter length by
veplacing 40 and DO by three roads meeting at 120° as indicated by the



dotted 1ines in Figure 12. This configuration is the same as the absolute
minimum. So, for w = {¥/3 - 1) there is only one minimum roadway. A similar.
situation arises when w < 0, the rectangular array of towns being such that
AB < AD. As w is reduced, the full configuration in Figure 10(b) is longer
than the broken configuration. When the point is reached where the full config-
uration consists of two coincident three-way intersections, the configuration
will no longer be a minimum configuration and the only minimum configuration
will be the broken configuration. This will occur when w = -(1 - (/3/3)).

4. Ané1ogue methods and soap films

1t is perhaps unexpected to find that the square array of towns has a mini-
mum roadway configuration that does not have the full symmetry of the square.
However, it should not be thought so unusual, as we regularly encounter the
solution to this problem in another context.

We solve this problem every time we tie up a parcel with string. Usually
we start by wrapping the string around the parcel with the configuration shown
in Figure 13(a). When we pull on the stfing, 1n.oﬁder to minimize the length of
string being used to tie up the parcel securely, we produce a constant tension
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Figure 13. Tying up a parcel: (a) initial configuration, string loose (b)
string taut.

in the string. This leads to the configuration in Figure 13(b). The three-way
'String—intersection has three equal forces, produced by the constant tension in
the string, in equilibrium, so three strings must meet at 120°.  Thus minimizing
the length of string leads to all the features associated with minimum roadway
~problems.
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Another analogous system, which has fhe advantage that it can easily be
applied to any number of points, is that based on the properties of soap fiims
(see references 1 and 3). A soap film has the property that its energy is
nroportional to its area. For example, a soap film contained by a circular ring
will not bulge out at equilibrium but will form the minimum-area surface, the
disc contained by the circular ring.

In order to make use of this minimum-area property to solve minimum-path
problems, we must convert the minimum-area property into a minimum-path property.
To do this, let us first focus attention on the simplest problem: the minimum
path connecting two points. Consider a soap film contained between two parallel
clear perspex plates, with two pins perpendicular to the plates, separating the
plates, and at some distance from each other. Then, by symmetry, the film will
be perpendicular to the plates and bounded by the two plates, beginning on one
pin and ending on the other (Figure 14). Consequently the film will be in the
form of a tape, with constant width equal to the distance between the plates.
The area of the soap film is proportional to its length. When it comes to equi-
librium it will have minimum area and also minimum length. Thus the tape will
end up, in equilibrium, with the straight-1ine configuration in Figure 14. The
analogous solution can, by the same reasoning, be extended to-any arrangements
of pins and points. The soap film solution to the four-town problem is shown
in Figure 15,

We have seen that the four-town problem can have two minimum configurations.
In order to determine the minimum roadway with the smallest length we need to
calculate the length of each path and determine the one with the smailest length
using the 120° property. In problems with many towns there may be many minimum
configurations. This analogue method is based on producing soap films between
the plates by dipping the plates into a bath of soap solution at different
angles or perturbing an equilibrium soap film by blowing it into another equil-
ibrium configuration. There is no simple method of determining analytically all
the minimum configurations (see reference 4).

An interesting example of a problem with three minimum configurations occurs
when solving the minimum path joining six towns arranged at the vertices of a
regular hexagon. The three configurations, which can easily be obtained using
soap films, are shown in Figure 16.
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Figuref14. Soap films bounded by parallel Figure 15. The minimum-path soap
plates and two pins. The curved surface film joining four pins arranged
is a non-equilibrium soap film and the in a square array.

straight surface is the minimum-area,

mﬁnfmum-path, surface.
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Figure 16. Minimum configuration for six towns arranged in a regular hexagon.

If the sides of the hexagon have unit length, the lengths of the minima can
be calculated, using the 120° property, to be 3/3, 2/7 and 5 respectively.
It is interesting to note that the configurations have, 3, 2 and 1-fold symmetry
about the axis of symhetry perpendicular to the plane of the hexagon. The con-
" figuration of smallest length in this case is 16(c). However, in other problems
it may well be one of the internal roadways.
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Figure 17. The minimum roadﬁay system 1inking London, Bristol, Manchester,
Glasgow and Aberdeen.

Let us now apply this analogue method to the practical problem of linking
London, Bristol, Manchester, Glasgow and Aberdeen by the shortest length of
roadway. It is necessary to draw a map of Britain on one of the parallel
perspex plates and insert pins : perpendicular to the plates at these towns.
After dipping the plates into soap solution we obtain the roadway configuration
shown in Figure 17, with one Steiner point to the east of Glasgow and one south
of Birmingham. In this application, there is only one minimum roadway configur-
ation. '
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