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A MATHEMATICAL CHRISTMAS
BY
DAVID SHARPE

1. Trees

Most of us will have a tree in our homes over Christmas. To the mathematic-
ian, a tree is a special type of graph. In this context, a graph is simply a
finite set of points in the plane, called vertices, With certain points joined
to others by lines, called edges. So Figures 1 and 2 both give examples of
graphs. Such configurations can arise, for example, with transport networks
such as the London Underground system, where the vertices are stations and the
edges are underground lines connecting various stations.

You may be able to spot a difference between the graphs in Figure 1 as oppos-
ed to those in Figure 2. In the graphs in Figure 2, it is possible to start at
one of the vertices and travel along edges through distinct vertices so as to
arrive back at your starting point (like travelling right round the Circle Line
on the London Underground!). We say that the graphs in Figure 2 have circuits,
whereas those in Figure 1 do not. The two graphs in Figure 1 are called trees,
those in Figure 2 are not. Thus, mathematically at least, a tree is a graph with
no circuits. (Even Figure 1(b) is a tree, 'well known for its bark', as Robin
Wilson remarks in Reference 1!)

If we now count the numbers of vertices and edges of these various graphs, we
see that Figure 1(a) has 17 vertices and 16 edges, Figure 1(b) has 11 vertices
and 10 edges, Figure 2(a) has 17 vertices and 22 edges and Figure 2(b) has 11
vertices and 12 edges. Is it possible to tell whether a graph is a tree by
comparing the number of its vertices with the number of its edges? If we assume
that our graph is connected in the sense that it is possible to get from every
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vertex to every other by travelling along edges, a reasonable assumption in the
case, say, of an underground sysfem, then the answer is 'yes'. It is not diffi-
cult to convince yourself that the trees are the .graphs which have one edge fewer
than they have vertices. A1l the rest have at least as many edges as vertices.



2. Stars

NYour Christmas tree will probably have either a fairy or a star on top. What
is a star? Mathematically, it is a geometrical figure which contains a point S
with the property that every other point of the figure can be joined to S by a
straight line Tying wholly within the figure. For example, any point in the
inner hexagon of Figure 3 can be taken as S. Thus a star-shaped room is one
which has a point from which every other point of the room is visible. No doubt
trainee teachers are advised to stand at such a point in the classroom! Another
example of a star-shaped figure is in Figure 4. This would look rather odd on
your Christmas tree, but it nevertheless satisfies the requirements for a star.
On the other hand, Figure 5 is not star-shaped. Such a shape would be most inad-
visable for a classroom, since there is nowhere the teacher could stand so as to
see every student.

Here is a fascinating result about star-shaped regions in the plane. Suppose
that, for every three points in the region, there is a point in the region from
which all three points are visible. Then there is a point in the region from
which every point is visible, i.e. the region is star-shaped. This is called
Krasnosellskii's Theorem.
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A convex figure is one such that every two points of it can be joined by a
straight line lying wholly within the figure. Figure. 6 is an example of a convex
figure, whereas Figure 7 1s not. A convex figure is star-shaped from every point
of it.

In Figures 3 and 4, the points from which the figures are star-shaped are
those in the shaded regions. We call these shaded regions the kermels of the.
figures. What property do these kernels possess? Why, they are convex. In 1912,
a mathematician by the name of Brun proved that this is always the case, so that
the kernel of a star-shaped figure is always convex.

‘We can quite easily give an argument to prove Brun's result. We refer to
Figure 8. Let 4, B be two points in the kernel of our star-shaped figure
(whose boundary is now shown in Figure 8), and let ¢ be any point on the line
segment joining A, B. We must show that every point of the figure is visible
from C, so consider any point X of the figure. We must show that the whole
line segment CX 1lies in our figure. Now each point ¥ on the line segmént
AX Tlies in the figure (because 4 is in the kernel). Thus each line segment
BY Ties in the figure (because B is in the kernel). Since this is true for
every Y on the line segment AX, the whole triangle ABX Tlies in the figurel
In particular, the whole line segment ¢x 1lies in figure, so ¢ really is in
the kernel, as we claimed.
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3. Decorations

We now describe a way of decorating your Christmas tree. Take a rectangular
strip of paper, preferably brightly coloured, much longer than {t is wide, and
put a single twist in it. Now glue the two free ends together. We now have a
Mobius band® (see Figure 9).

A Mgbius band is a very curious mathematical object. For example, how many
sides does it possess? Answer: only one. Try tracing round a side with a pencil
as shown by the dotted line in Figure 9. You will eventually come back to your
starting point. How many edges does the band possess? Answer: only one.

Now take a pair of scissors and cut your Mdbius band down the middle. You
will be amused at the result. Or you could cut it one-third of the way across.
Your tree will end up festooned with exciting mathematical figures.



A mathematician confided
That a Mobius band is one-sided,

And you'll get quite a laugh

If you cut one in half,

For it stays in one piece when divided.#

4, Fairy-tales

Christmas is a time for pantomimes and fairy-tales. Here is a mathematical
fairy-tale. Take two Mobius strips. Each has only one edge. Bring the two
edges. together and sew the strips together. The result is a mathematical object
called a Klein bottle after the German mathematician Felix Klein who invented it
in 1882, We refer to a Klein bottle as a mathematical object because 1t cannot
exist in three dimensions. In our drawing of it in Figure 10, it appears to pass
through 1tself and therefore to have a circular hole in it (the dotted line 1n
the figure). But for the mathematician this hole does not exist. The bottle has
no rim and only one side. You would be i1l-advised to try to use a Klein bottle
to contain your Christmas drinks; nothing will stay in it because it has no
inside or outside!

A mathematician named Klein

Thought the Mobius band was divine,
Said he, If you glue
The edges of two,

You'll get a weird bottle like mine;'*

Figure 10

t A.F. Mobius was a German mathematician who 1in 1858 first considered such a
band. s

+ See Reference 2.
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5. Balloons

No Christmas party is complete without balloons which, for our purposes, we
may think of as spheres. We now describe a way of decorating a balloon.

The balloon represents the earth. Take a felt-tipped pen and mark three
houses A, B, C. Depending on the size of the balloon these may have to be
blobs. These three houses are to be connected to the gas, water and electricity
services, denoted by three more blobs G, W, E. Thus each of 4, B, C must be
joined to each of ¢, W, E by a pipe or wire, which we draw with a line. The
question is this: can this be done without these lines crossing? Try it on your
balloon. (The problem is the same on a plain piece of paper, but less fun.) No
matter how much you try, 1t cannot be done; two of the lines must cross (see
Figure 11).

If we refer back to Section 1, we see that we have a graph with 6 vertices and
9 edges, and we say that this graph is not planar. Another example of a non-
planar graph is obtained by marking five vertices on your balloon or piece of
paper and joining every vertex to every other (Figure 12). We call this graph
the complete graph on & vertices, and label it K. .

Is there a strange planet upon which we might stumble, hitch-hiking around
the galaxy, which might allow us to join our houses to the services without the
supply lines crossing? If there is a doughnut - (or swimming-ring-) shaped



planet, then the answer is yes. This we have shown in Figure 13, where the
dotted lines go through the hole of the doughnut and the dashed line goes round
the back. Mathematicians for some reason prefer to speak of a torus rather than
a doughnut! It is also possible to draw the graph K, ona doughnut/torus with
no crossing edges (Figure 14).
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6. Food

This suggests an exciting addition to your Christmas party fare. Decorate
doughnuts using piped icing with these graphs. Your friends will be fascinated!
You can really go to town with this idea. You can also decorate your doughnut
with k. and K. But try it with kg and it will not work. In fact, to draw

7
K without crossing edges you need a doughnut with two holes, shaped Tike a

f?gure 8, called a double torus in the trade. And for _Kél you will need three
holes! 1In general, for K, you will need % holes, where h 1is the smallest
integer greater than or equal to 1/y,(n - 3)(n - 4). This was proved after a
long and difficult struggle by two American mathematicians, Ringel and Youngs,

in 1968. The corresponding result for the graph with m houses and n services
is that you need p holes, where p is the smallest integer greater than or
equal to %(m - 2)(n - 2). Thus Ka,s above needs one hole, as we saw, but

K, o needs two. (See reference 1, p.69.)

With these suggestions, next Christmas could be the best ever!
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$500 REWARD

Professor Michael Cowling of the School of Mathematics of the University
of New South Wales is offering $500 reward for information leading to the
solution of the dangerous problem described below. The School of Mathematics
is offering consolation prizes for interesting contributions towards the
solution of the problem.

PROBLEM: Let A be a region in the plane of area one;

A may have several components, and need not be convex, so that

A may have holes. Given a positive integer n, let An be the region
consisting of all points in the plane which are centres of circles of
whose circunference at least (1/n)th lies in A. How fast does the
area of An grow as n increases? For instance, is it true the area
of An is less than 1000n2, or 1,000,000n3, no matter what the shape
of A wmay be?  In order to be eligible for the full reward, it is not
sufficient to consider only particular regions A, '

Solutions, together with the name, address, and age of the solver,
must be sent to Professor M., Cowling, School of Mathematics, University
of New South Wales, P.0. Box 1, Kensington 2033, and must arrive by
December 1, 1984, A panel of Judges from the School of Mathematics
will examine the solutions, and the winner or winners will be announced
and contacted before March 1, 1985, If several solutions are found,
the prize will be shared amongst the solvers,
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