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WOULD YOU BELIEVE IT?
BY
HAZEL PERFECT™

These are not tall stories. A1l the assertions are true, though you may think
some of them are very hard to believe at first. The arguments range in diff
culty and sophistication very considerably; and all that the results have in

-common is that most of us would find them to be surprising.

1. A buckled railway 1ine ,
We begin with a very elementary problem. Figure 1 illustrates a piece of
railway line which was originally 1 mile long. It is buckled in the sun, and,

as a result, expands
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(uniformly) by 1 foot while the ends A, B remain fixed. For simplicity, we
suppose that it becomes lifted from the ground at its middie point X as shown,
At a guess, how high is X above the ground? Perhaps a few inches or maybe a
yard? No, X 1is more than 50 feet above the ground!

If we measure in feet (remembering that 5280 feet = 1 mile), we have, in the

witation of Figure 1,

Hie




xv2 = ax? - ay?
= (2640-5)% - 26407
= 2640:25
and so
XY = 61-4,

2. Common birthdays

This problem and the next one are probabilistic. To set the scene, supp-
0se you were to ask two dozen people in the street (chosen at random) the dates
of their birthdays. Then it is more likely than not that you would find that
two of them had birthdays on the same day. The assertion that this is so for
such a small number of people is usually greeted with surprise. So let us
supply & proof. However, to begin with, we should emphasize that all we are
saying is that the probability of the occurrence ot two birthdays falling on the
same date exceeds %, Without too much inaccuracy, we shall suppose that there
are 365 days in each year and that all dates are equally tikely to be birthdays,
Then the number of 1ists of n birthdays is 365", the number containing no
repeated date is

365(365 - 1)(365 ~ 2)...(365 - n + 1y

and so the probability of the occurrence of a repeated birthday for n people
is
1 - 365(365 ~ 1)(365 - 2)...{3656 - n + 1)
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Thus, for n = 24,

10gepn

whereas
loge&2 ~ - 069 .

Therefore, for n = 24, it follows that 1 - p >%. (The critical number is
23 in fact, not 24, but since our calculations are approximate we should need
to discuss the size of the error term to convince ourselves of the stronger
result. )

3. The hats problem

Ten gentlemen attend a small party and leave their hats in the cloakroom.
One thousand gentlemen attend a public reception and Teave their hats in the
cloadroom, On each accasion some confusion arises, and the hats are handed
back to the guests at random. The probability, in each case, that no gentle-
man receives his own hat is about 0:37. Indeed, this probability to all intents
and purposes is independent of the number of people 1nvo]ved.TT This comes as
something of a surprise; but a few fairly simple calculations will convince us,
‘ Consider n individuals {with n hats); and denote by D the number
of ways in which they can receive the wrong hats. This is equal to the number
of permutations (a],az,...,an) of (1,2,...,n) such that a; =1 for each
" i, ij.e. the number of derangements of (1,2,...,n). The probability that no
man receives his own hat is then Dn/n!. which is what we wish to calculate.

t In this connexion, we mention a recent article on the birthday problem by
Susan Wilson (Mathematical Spectrum, Volume 13, Number 2), where a table of
computed values for Py is given.

Tt This problem was also considered by Harris S. Schultz in Volume 12, Number
2 of Mathematical Spectrum,.



To this end, consider those derangements of (1,2,...,n) in which the first
position is occupied by the integer k = 1. The number of these in which the
integer 1 occupies the kth position is evidently equal to Dp-oi and the
pumber in which 1 does not occupy the kth position is Dn_] (since we may
regard the kth position as a forhidden position not for k but for 1),
Since k 1tself may take any one of the n - 1 values 2,3,...n, we obtain
the relation

Dn L (n = 1)(Dn_} + Dn_z)

provided n 2 3, Also Dy =0 and D, = 1. Thus

D - nb »
n n-1=-(0 ;- (n- 1D, o)

(-1)%(D_, - (n - 2)D, _4)

n

n-2
(“})n“z
= (-1,

It is helpful to write this last equation in the form

|=
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Now if we examine this for the first few values of n we shall see the pattern
at once:
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and the right-hand side is small even for quite small values of ny for instance,
for n=5 it is equal to 1/720. Therefore Dn/nl & e'] = 0:37 .

4. Infinite collections

It is not difficult to find very surprising results when we venture into
the infinite, Let us begin our discussion by getting our basic notions clearly
defined. Two finite sets evidently have the same number of elements in them
‘precisely when they can be put in one-to-one correspondence with each other.
It seems entirely reasonable, therefore, to take this as the definition of
‘having the same number of elements' for sets which are not necessarily finite.
When we do so, however, we meet with some surprises. For instance, in the
collection of all (positive) integers, the even integers form a proper sub-
collection; but, on the other hand, in view of the pairing

] 2 3 4

b1

2 4 6 8

we are bound to admit that, according to our definition, there are just as many
even integers as there are integers altogether. This is only the first of the
surprises that await us, however. Surely there are more fractions than there
are integers: Let us consider the fraction p/q, where p and q are



positive integers, and associate with it the symbol {p,9). The diagram

(1,1} » (1,2) (1,3) » (1,4) ...

{ 1 $
(2,1) « (2,2) (2,3) (2.4) ...
¥ 7 4

(35?} > (3;2} ’}'{;333)

(4,1) « (4,2) «(4,3) « (4,4) ...

indicates just how we can make a list of all these, and thus pair them off with

the integers 1,2.3,.... If we delete symbols which represent the same fract-

ion (for instance (2,4}, {Q,G; , which all represent the same fraction ) we
. o ; 1 1 ;;

stil) get a list: namely 1, Eh . g = g el and se pn (in the ardinary

notation for fractions). Therefe.‘ there are just as many integers as there

are fractions. In contrast to.all this, it is possible o show that the real
numbers cannot be paived off with the integers, and thus that there are gen-
winely more real numbars than integers or fractions. Instead of looking jnte
the proof of this last assertion, we turn to something a Vittle different and
very surprising. Let us consider the unit interval on a strajght Tine. Its
length is 1 unit. We shall proceed to show how to delete from it a sequence of
subintervals whose lengths together add up to 1 unit and yet leave behind just
as many points as there were in the original interval. It will make our cal-
culations simpler (but is not significant in any other way) if we work with
intervals which are 'closed' on the left and 'open' on the right, so that far
instance our original interval includes 0 but does not include 1 . We shall
indicate this by writing this interval as
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[0,1); with a similar notation for the d§1eted subintervals. First, we delete
the 'middle third' of [0,1), namely [%-,%); next, the middle third of each of



the remaining two intervals, namely [%9 é& and Eé} %); and so on, always re-

moving middle thirds. Let us denote by F the set of points which ultimately
remain. The total length removed is evidently equal to

1
:—3'2-— é“"'...
_ 1 2 22
1
B e = 7.
-5

Next, let us consider any point x of the original interval [0,1) and
write x in binary form as O.b]bzbs... . Each bi is then 0 or 1. (We

avoid recurring 1's in order to make the representation unidue.) Put ti o 2b1
for each i and regard o.t]t2t3... as the representation of a ypea] number
f{x) to base 3. Then each tj is 0 or 2. Now, since ty # ].f(x)¢[%w%).
and since t, =1, f(x) ¢ [%ugd or to [%3%); and so on. Thus f(x) does not

belong to any of the deleted intervals, and so f(x) € F, We have therefore
defined a mapping f: [0,1) + F. dUnder this mapping, distinct points of [0,])
clearly go into distinct points of F; and hence there are as many paints in F
as in the whole of [0,1)

5.  Turning a line segment

In 1917 the Japanese mathematician Kakeya proposed the following problem.
Find the region with least area within which it is possible to turn a line
segment of length 1 unit continuously through a comp]ete revolution. Certainly
the area of this region will be less than or equal to Hﬂ » which is the
area of a disc of diameter | unit. It was quite soon shown to be, in fact
less than or equal to %ﬂ » which is the area inside a deltoid inscribed in a

t # means 'does not belong to'. Thus it is noet true that %wﬂ f(x) <:% '



circle of diameter %- units. Since, indeed, in Figure 3, the intercept AB

e

Figure 3

on the tangent at M 1is-equal to | unit for each position of M, it is read-
ily seen just how to rotate a unit line segment through 36Q° entirely inside the
deltoid. But this was far from being the end of the story. The answer tp
Kakeya's question is that a unit line segment can be turned thiough 360° inside
a region of arbitrarily small area. It will take a 1ittle time for us to just-
ify this truly surprising assertion, for although the original argument has
been considerably simplified over the years, yet it is by no means easy. It
depends on a basic lemma, and we shall reserve the proof of -this for an appendix
(to be read by those of you who want more than a sketch of the argument).

Lemma. Let ABC be a triangle with base AB: divide AB into 27 equal
subintervals, and join each point of subdivision to C to form 27 samll tri-
angles inside ABC. For a suitable choice of n, it is possibTe to slide these
small triangles along the base AB so that they overlap each other to such an
extent that the total area which they cover in their new positions is arbitrar-
ily small. '

Now consider a circle with centre 0 and radius 1 unit. Descnribe an
equilateral triangle ABC about this circle as shown in Figure 4 and join'

A0, BO, CO. Consider separately each of the triangles OBC, OCA, 0AB with
bases BC, CA, AB and, as in the lemma, divide each of them inte 27 smal]
triangles by means of equally spaced points of subdivision of their bases.
Figure 4 shows the subdivision of OBC into 2% small triangles. According

to the lemma, given any positive number ¢ , however small, we may chogse n



so that these small trianglés when translated parallel to the bases BC, CA,

AB  cover a total area not exceeding {say) %—s . Our circle is divided by

small triangles into sectors (one such sector is shown shaded in the figure),
and we may consider translations of the triangles as translations of the sectors.
Let us denote by U the figure formed by all the sectors in their final posit-
ions. Then the area of U 1s certainly less than %—e . We are going to show
how to entarge U to a figure V whose area does not exceed e and within
which a unit line segment may be turned continuously through 360°, Tq this end,

Figure 4

let us look first at two adjacent small sectors in their new positiops, (it
does not matter whether they correspond to small triangles in the same triangle,
say OBC, in which case they will both have been translated in the same direct-
ion, or in neighbouring ones, in which case they will have been translated in
different directions.) No directions will have been changed since the sectors
have been translated only, not rotated, As in Figure 5, denote these two
sectors by 0'PQ, 0"RS, where 0'Q and 0"R are parallel. Take two radii
0'X, 0"Y, one in each sector, which make a small angle 6. Let 0'X, 0"Y
(perhaps produced) meet in 0, and form a sector 04X,Yy at 0y of radjus ]
unit. Evidently O'P can be moved continuously to 0"S entirely within the
shaded region. To be specific: rotate 0'P to 0'X, slide 0'X to OIX].
rotate 0.X; to 0,Yy, slide 0,Y; to 0"Y, and finally rotate 0"Y to

0"S. By considering all adjacent pairs of segments, let us augment U by
means of all these small sectors OIX1Y1 each with centre angle @, to form V,
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A unit 1ine segment can evidently be turned through a complete revolution inside
V. But the total area added to U by this procedure is equal to 3.2"(6/2);

so it only remains to choose & to be less than or equal to €/3.2"  to make
this total area added to U to be less than or equal to-%e . Thus Y has area
not exceeding e , and we can indeed turn out line segment through a complete
revolution inside a region of arbitrarily small area,

Figurc §

Appendix

We supply a proof of the lemma stated on p.74, omitting details of routine.
(albeit tedious!) elementary geometry. Let us denote by S the area of the
triangle ABC and by ¢ the length of AB. Now there is an even number of
smell triangles inside ABC, namely 2N, and we begin by sliding the first,
third, fifth (and so on) of these along AB through a small distance cx/ el
towards B. To fix our attention, we shall look at the first four triangles ip
the right of A; so let us denote the first four points of subdivision (read
from A} by X, Y, Z, W and indicate, as in Figure 6, the new positions of the
triangles ACX and YCZ by corresponding dashed letiers. Let A'C' meet
YC in D, and V'¢' meet WC in D,. Now the tota] area covered by A'é'X‘
and XCV s equal to the area of the (shaded) triangle A'D,Y tagether with
that of two tiny (darker shaded) triangles. We may calculate this first area
to be S{1 - %x)Z/Z n-1 , and the sum of the areas of the twe tiny triangles to
be Sx2/2 " Now, by a consideration of appropriate ratios, it is easily
checked that YDy and Y'D, are equal in length; they are also parallel and
so, by a further slide, the triangles A'DlY and Y'Dzw may clearly be 'fitt-
ed together'. This happens all the way along, and we form a new triangle from

i1
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the il triangles A'D Y, Y'D,W,... whose area is S(1 - %x)z , and in addit-
ion we have 2”;l pairs of tiny triangles partly outside this triangle with
total area at most %sz . We repeat the whole procedure on the new triangle
with its subdivision into 2"'] small triangles, and go an repeating it, A
moment's consideration will confirm that all the sliding involved js induced by
sliding the original 2" triangles ACX, XCY, YCZ,... in ABC. After n - ]
repetitions, the total area covered by these triangles in their new positions
will be at most equal to

: -
%E] - %x)z SO £ R %x)z + %sz + %—(1 S IEBE e s ?x)zn 2y?

—2")(
n
< s(1 - % )20 4 sxlre(1 - (1 - Jz—x)z) .

Finally, given any positive number & , however small, we may first choose x
small enough to make the second term above less than &/2 and then choose n
large enough to make the first term less than &6/2. The whole area is then
less than & .
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