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LEARN TO FIND YOUR WAY IN THREE-DIMENSIONS!

We 1ive and function in a three-dimensional space all through our existence,
we are surrounded almost exclusively by three dimensional objects, yet when we
have to describe spacial processes, geometrical objects, and their relationships
by abstract presentations in the plane: we run into difficulties. Here we look
at some examples which will show how to tackle such problems.

»

We are all familiar with the parabola. If we throw a ball up at an angle
its path is a pretty good approximation to the parabola. This path lies in a
plane which is perpendicular to the surface of the earth. We can define this
curve as the locus of a point which is equidistant from a fixed point, F, and
from a fixed line, £, where F does not lie in £. We call the fixed point,
F, the focus and the fixed line £ the directrix of the parabola. We can
conveniently illustrate our curve in the Cartesian co-ordinate system as shown

in Figure 1. In this situation we have the equation
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y = X (1)
vl representing the parabola. With our
o definition we managed to represent a
- one-dimensional point set (or a one-.
/// dimensional geometrical object, a curve)
in the two dimensional plane. The
;'r”///>;:;;7 easist step from two- into three-
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our parabola about its axis (in our
present example it coincides with the
y-axis), the parabola sweeps out a
Figure 1 surface which we call a paraboloid of

rotation. This surface inherits the
properties of the generating parabola. For example F, the focal point, remains
the focus of the paraboloid, so if a Tight source is placed at F the reflected
rays from the "inner” surface travel parallel to the axis of the parabola. We



know that the properties of the paraboloid of rotation have wide and important
applications in present day technology and science.

Next we shall Took at a more difficult example in three dimensional space.
Let g and h be two striaght lines which are perpendicular to each other
without intersecting. This, of course, is impossible in two-dimension, but
perfectiy all right in three-dimension. Think of a bridge spanning a roadway.
Two such straight lines are called "skew", or "crossing" lines when they have
no common point, neither are they parallel to each other. The "crossing angle"
of two skew straight lines is equal to the angle formed by two intersecting
straight lines which are parallel to the respective skew lines. So if two skew
straight lines are perpendicular to each other, the corresponding paraliel
straight lines intersect each other at right angles. Note that we talk about
"crossing” and "intersecting" straight lines to distinguish between skew lines
and lines lying in the same plane.

We now ask the question: what is the geometrical object formed by all those
points which are equidistant from two perpendicularly “crossing", skew straight
lines g and h?

Note: The distance of a point P from a
straight line g 1is the length from P
to the foot of the perpendicular from

P to g. (See Figure 2.) Let us

now analyse our problem. It is clear
that the set of points satisfying the
stated condition will form a surface

and this surface shares no common

points with g and h., Furthermore

a plane o containing h and
perpendicular to g will cut this
surface in a parabola, where h 1is the directrix and the point Q where g
pierces the plane o is the focus of this parabola. Similarly a plane, 8.
through g and perpendicular to h will cut the surface in a parabola.

Figure 2



We can illustrate this three-dimensional situation on our two-dimensional
paper, keeping in mind that the x-axis should project out of the plane. e
take g, one of our straight lines parallel to the x-axis, so that it passes
through the point Q(0,0,a), take the other straight line h parallel to the
y-axis, so that it passes through the point R(0,0,-a). The lines g and h
"cross" perpendicular at a distance Z2a. z
(See Figure 3.)

Let P(x,y,z) be the general point
satisfying the required condition.

6r0,0) ia
The foot of the perpendicular from 0

P to g is G(x,0,a), the foot 9 i 4
of the perpendicular from P to h
N
h is H(O,y,-a). According to i R Higy,-0)
our requirement Figure 3
distance {PG) = distance (PH) (2)
Using the distance formula (or Pythagoras's Theorem) we have
dist (PG) =vy° + (z - a)?
; . el 2
dist (PH) =v/x“ + (z + a) (3)
and :
/x4 (z+2)8 vy’ (2 - a) (4)
Squaring both sides and ordering the equation we get
4az = y2 - x2 (5)

Equation (5) represents a quadratic surface @¢. To visualise and to analyse
¢ we shall cut it with various planes.
1. Cut ¢ with the yz-plane, i.e. put x

0 into equation (5), we get
daz = y2 (6)

Comparing (6) with (1) we recognize that the curve of intersection is a
parabola "open above".



Cut ¢ with the xy-plane, i.e. put y = 0 into equation (5), we get

daz = - x2 (7)

The curve of intersection is clearly a parabola "open downwards".
Cut ¢ with the xy-plane, i.e. put z = 0 into equation (5), we get

y- - x =0 (8)
which can be written as

(y - x){y+x) =0 (9)

A product vanishes when one of its factor becomes zero. So from (9) we
obtain the equations

y=x and y = - x (10)

So the curve of intersection splits into the two straight lines represented
by the equations (10).

Cut @& with a plane parallel to the yz-plane. We put x = k into
equation (5) and obtain

Z 2

daz = y© - k (11)

Clearly the curve of intersection is a parabola "open above". Comparing
(11) and (6) we see that with shifting a parallel plane, we are obtaining
parabolas as curves of intersections.

Cut ¢ with a plane paraliel to the xy-plane. We put y =k into
equation (5) and obtain

baz = k2 - X (12)

The curve of intersection is a parabola "epen downwards", and so are all
the others cut by these family of planes.

We observe that there are two families of parabolas lying on the surface
¢. We may generate the surface & by parallel shifting the parabola
lying in the xy-plane along the parabola lying in the yz-plane, so that
the vertex of the first parabola lies always on the second parabola.

(see Figure 4.)



Figure 4

To have a deeper understanding of our surface cut ¢ with a plane which
is parallel to the xy-plane. Putting z =k into (5) we obtain

‘yz - xz = fak (13)

For k= +1, +2, +3, ... we obtain a familyof equilateral hyperbolas.
If we project these hyperbolas onto the xy-plane we get the "strata-plan®

illustrated in Figure 5. This \\\\\\\‘ v\ fﬁf

strata-plan includes the special
case of yz - x2 = 0, vresulting
in the two straight lines obtained
earlier. These lines are
assymptotes to the family of

hyperbolas. This surface ¢ -

for obvious reasens - is

frequently called the saddle-
surface. But considering the

Figure 5



resulting curves of intersections we obtained by various cutting planes,
¢'s geometrical name is the hyperbolic paraboloid.
We must consider one more important series of cuts.

7. Cut ® with a plane parallel to the plane y = x. Putting y = x+ k
into equation (5) we obtain

2

2kx + k“ = daz (14)

Here we have a linear equation in x and z which indicates that these
cuts with the family of planes y = x + k vresult in a family of straight
lines. The same applies to cuts obtained by the family of planes

y = - x+Kk.

So we have discovered the interesting fact that there are two distinct
families of straight lines which can be laid onto the curved surface @! This
is certainly not obvious at a glance! This important property of ¢ makes it
possible to be constructed from straight

line elements, hence its wide application

in architecture, building and industry.
Figure 6 shows how this "saddle-surface"
arises as the diagonally opposite corners
of a square rid are raised and lTowered
respectively.

Figure 6

To encourage you to exercise your spacial imagination and your analytic
power I leave you with an assignment:

Find the geometrical object formed by all the points which have the
distance - relationship from two perpendicular skew lines g and
h expressed as

(continued over)



distance(GP)
distance(HP)

=1
K

where K >1.

You can send your work by no later than 31st January 1986 to me
Editor of Parabola.

I have a special book prize for best work!

This article was based on the work: "VYon der zweiten in die dritte Dimension"
by E. Schrider (ALPHA/15/1981).
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