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MATHEMATICS IN COMPUTER SCIENCE AND VICE VERSA

by
Michael Cowling®

I propose to describe how computer science depends heavily on mathematics, and
how mathematice has been revolutionised by the advent of the computer. The moral of
my discussion is that to be a good mathematician, some familiarity with computing is
nowadays vital, and conversely, to be a good computer scientist, a solid grounding in
mathematics is equally important,

Areas in computer science which depend heavily on mathematical ideas include
complexity theory and program verification, Two of the areas of mathematics which
have developed remarkably because of the computer are called fluid dynamics and
topological dynamics., I will describe each of these very briefly.

First let us look at how mathematics plays a role in computer science. I want
to describe briefly the mathematical ideas of countability and of combinatics, and
then indicate how they fit into computing.

Last century, Geory Cantor introduced the idea of cardinality, to count infinite
sets. Recall that a “"set” is an object made up of "elements” - we write x € S to
‘indicate "x is an element of S" - and usually some explicit rule is given for
describing: the set in terms of its elements. For instance {3,4,5) denotes the set
whose elements are the numbers 3,4 and 5, N denotes the set of natural numbers
{0,1,2,3,4,...), vhere the dots are supposed to indicate that the other elements of
the set are obvious, and (0,1) denotes the set of all (real) numbers between 0
and 1, exclusive. Cantor observed that a finite set S has n elements exactly
when there is a function from (1,2,3,....,n) to S which assumes each element of S
as a vﬁlue exactly once. Thus, the function f(x) = x + 2 has the property that, as
x varies over ({1,2,3} the values f£(x) vary over (3,4,5): the cardinality of

(3,4,5) is 3. Cantor said that a set S has cardinality RO (aleph-null) when

there is a function f from N to S with the same property (we usually say f 1is a
bijection (or an isomorphism)) Here are some examples of sets with cardinality Nh:
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1) N itself: take f(x) =x, and as x varies over N, £(x) does too:

2) the even positive integers {2,4,6,8,10,12,...5: take f£(x) = 2% + 2, and'as
x varies over (0,1,2,3,...}, £(x) varies over the even positiye integers,

3)  all the integers {...,-4,-3,-2,-1,0,1,2,3,4,...): take

(%/2 for x even )

n
£(x) = S P e

\-(l%l) for x odd |

These three examples indicate that there are infinite sets with cardinality 0

which are smaller sets than N, and others which are larger than N. After-Cantor
found @, the set of all rational numbers, which seems much bigger than N, also
has cardinality ¥., i.e. there is a function £ from N to Q which is a bijection
(though it‘s difficult to write explicitly), it seemed reasonable to suppose that all
infinite sets have cardinality Ng- But then he showed that (0,1) (which is
clearly infinite, since all the numbers % (n22) ° lie in (U,f), for positive
integral n) does not have cardinality Hg. His argument goes as follows: he
assumes (0,1) has cardinality ¥., and then argues that something incorrect
happeris; this means his assumption of cardinality RD must be wrong. Indeed, if we
could find a bijection £ from N to (0,1), then we could list the values
£(0), £(1), £(2), ete. as decimal expansions:

£(0) = 0.a1a2a3a4...
£¢1) = 0.b1b2b3b4...
£(2) = 0.c1c2c3c4...

and so on. We then write down another decimal expansion:

r o= 0.&1b2c3d4... :



where, for k. =0,1,2,...,9, k # k: more precisely, k means 1 unless k =1, and

1 =2, The decimal number r lies between O and 1, and differs from £(0) in

the 1st decimal place, from £(1) in the an decimal place, from £(2) in the 3rd

decimal place, and s0 on, Then r is not equal to any of the numbers £(0), £(1),
£¢2), etc,: this means that not every element of (0,1) 1is taken as a value £(n)
for some n, But this contradicts the assumption that £ is a bijection from N to
(0,1), It follows that (0,1) has cardinality different from NO.

what, you may well ask, does this have to do with computer science? There are
many things we may expect of a computer: to do word-processing, to store and
regurgitate information on demand, and even to do mathematics, These look different
to us, but to the computer it's all just a question of turning semiconductors on and
off, of sending pulses along wires, and 20 on. And any limitations on what computers
can do which will show up in database manipulation will show up in & slightly
different form in doing mathematics, and vice versa. one of these limitations shows
up in mathematics because Cantor did mathematics last century - had he worked on
databases, it would now be formulated in different terms. This limitation is called
computability:. If I write

f(x) = xz + 40% + 41

then this is a "computable function”: one can design a computer program which given
(say) any rational number x, will reqgurgitate £(x) after some finite amount of

time. (This will probably be sooner if x =1 than if x = 10190 put never mind).

However, the set of all computable functions has cardinality 80' while the set of

all functions has larger cardinality. In other words, there are "non-computable
functions”, It took a long time for people to £ind an example of a non-computable
function: it has now been done (See Scientific American, May 1984, pp 70-80).

The next example I want to consider is called the "travelling salesman problem”.
_ When a new product comes on the market, a salesman tries to show it to all his
clients as fast as possible (and using as little petrol as possible). For example, a
Sydney-based salesman with clients in Sydney, Camden, Mittagong, Goulburn and
Gundagai will wisit them in that order, because they are all in the same direction,
but if he must go to Sydney, Windsor, Penrith, Camden, Campbelltown, Picton,
Mittagong and Wollongong it’'s not so obvious. We have a map like Figure 1:

o



H&ndsor
Psnrith o Sydney

Casden_ Cagpbelltown

Piston o Wollongong

Hittagong 0

Figure 1

and it’s not clear if it’'s better to go Sydney—windsor—Penrith—Camden—Campbe11t6wn-
Picton-Mittagong-Wollongong-Sydney or Sydnéy—ﬂindsor—Penrith—Camden—Picton—
Mittagong-Wollongong—Campbelltown-Sydney, or if there's a better route, What we need
is a list of places and the distances between them, and then we can work out the
best route. This is called combinatorial optimisation: of the different
combinations (routes) we . seek the optimum (shortest), Mathematicians have been
fretting about this sort of problem since travelling salesmen got wheels, and have a
lot to say about it. They know that the problem gets very complicated very quickly
as the number of places to visit goes up: if there are N places to go to, there
are N| possible routes; so in the above example, the number of possibilities
(starting and ending at Sydney) are 5020, though lots of these can be discarded
immediately. A recent case study treated over 300 places to visit - the mind boggles
at the number of possibilities.

How does this affect computing (other than travelling computer salesman)? Many
problems in computer science are of a similar nature to the travelling salesman
problem, because the order of doing things affects the time taken to run a program,
and the ideas of combinatorial optimization have been used successfully in looking
for faster search algorithms (find a mis-spelt word in twenty pages of document).qnd
sort algorithms (arrange a list of people first in alphabetical order, then in order
of age). The idea of algorithmic complexity (which means how long will it take to
solve the travelling salesman problem, or how long will it take to sort a long list)
are important in large scale operations. One U.S. Government agency spent many
millions of dollars updating computer equipment when a particularly fast algorithm
was shown mathematically to be fastest possible.
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Now let us look at two examples of how computers have changed mathematics, fluid
dynamics and topological dynamics, Fluid dynemice studies the motion of fluids,
including gases, such as air, but aerodynamice is such an important part of fluid
dynamics that it has its own name. Fluid dynemics includes the study of water waves,
which sheds light on such questions as the transport of sand around beaches (did you
know that all around the world, beaches are disappearing?), the construction of sea
walls and breakwaters, predicting tidal waves, and designing 12 metre yacht hulls and
keels. Aerodynamics includes the design of aeroplanes, and especially their wings,
which are the part responsible for the lift which allows them to fly. All of these
are mathematically wvery complicated, For example, in‘atudying aerofoils (a fancy
name for aeroplane wings), we usually imagine that we are seated on the aeroplane,
and that the air is rushing past us, as in the diagram:
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Figure 2: Section of aeroplane wing, with air flowing past

This is what actually happens in wind tunnels, which are used to test aerofoils
experimentally,

To describe such a flow, we need to take into account the pressure and
temperature of the air, which may vary from point to point and in time, and its
velocity of motion, which also varies from point to point and in time., If we
consider just the two dimensional picture of Figure 2, we need to work with functions
p(x;y,t} (the pressure] T(x,y,t) (the temperature], vx(x,y,t) [the x-component

or horizontal component of the velocityl and vy(x,y,t) [the y-component or vertical

component of the velocity] All of these will be linked by various equations, (which
express such physical principle such as the conservation of mass or of energy),
usually involving derivatives of the other quantities. In order to describe such a

flow in three dimensions. we need functiong of three variables and a third velocity
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combonent,..and the ,equations- became even more complex, We would probably simplify
matters by assuming constant temperature and qonstant velocity, but things are still
difficult,

In theory, if we could solve such equations, we could design the bést (in the
sense of most efficient) aeroplane or the best 12 metre ya;ht in the world, In
practice, we cannot solve the equations involved, However, with the aid of very
powerful computers, we are beginning to be able to say something aboqt the solutions
of these equations., For only $15 million, you too can have a computer which is
powerful enough to tackle this sort of mathematics with, It is a sobering thoughtvv
that, while Ben Lexcen was dragging model yachts through the water for months on end .
in order to come up with the Australia II keel which won the America’s Cup, the
Lockheeds, the Boeings and the McDonnell-Douglases of this world were désigning their
next generation of aircraft with the aid of supercomputers, and shutting down their
windtunnels., It seems that a lot of money is spent on yacht design, but it is
trivial compared to the investment in aircraft development. Nevertheless it'ia
likely that America’s Cup winners in the 2000's will be deslgned by computers ‘1
only because computers are getting cheaper and cheaper.

Our last example is topological dynamice., This is a fancy name for the study of
f(x), f£C(£(x)), f(£C£(x))), and so on. Here is an example. Supposé that, on a
tropical island in the middle of the ocean, enough fruit grows each year to feed
10,000 fruit bats, but no more, Suppose also that each spring fruit béts reproduce,
gso that, in ideal conditions, N fruit bats give birth to oaN baby fruit bats ([« is a
constant of proportionality] and hence after one spring, there are a total of N + N
fruit bats., A simple model of population growth says that if there are N béts one

year, then there are (1+a)N the following year, (1+a)2N the next year, (1+a)3N

the year later, and so on. This corresponds to letting £(n) = (1+n)N, and
considering £(N), £(E(N)), £(£C£(N))), and so on. A slightly less simple model of
populéﬁion growth takes into account the limits to growth posed by the food supply,
and says that if the population is close to 10,000, then some bats will nof
reproduce, and many others will die of starvation, so that if the population of bats
one year is N, then the next population the following year will be g(N),' whepe_
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If instead of_gonsidering the number of bats present, N, we consider the fraction
% = N/10,000 of the maximum population present, we find ourselves discussing the
function

h(x) = AX(i“'x) »

vhere A =1+ a., It turns out that the behaviour of h(x), h(h(x)), h(h(h(x))),...
depends in a remarkable way on the parameter A, If A is very small and positive
htheh, .. (h(x))...)) becomes almost constant as the number of h's increases; this
corresponds to a stable population, iIf A is a little bigger, then
heheh,..(h(x))...)) tends to a "limit cycle”: one year the population is N, the
next year something different, N’ say, and the year after is N again, and then N’
again, and 80 on, As ) gets larger, the “1imit cycle" gets more complicated, and
repeats itself every 4 years, or every 8 years, or every 16 years, ... . As A gets
close to 4, the behaviour of h(h(h(,..(h(x))...)) becomes "chaotic”, that is, there
iz no discernible pattern to it, This phenomenon, and in particular the "period
doubling” and the “onset of chaos” was discovered experimentally: subsequently theory
confirmed what had been found with the computer. See Scientific American, Nov, 1981,
16-29 and Aug, 1985, 8-14.

And now I conclude. In this day and age, you cannot do mathematics without some
familiarity with computing. And, increasingly, you cannot do computer science
without & wvery solid base in mathematics, If you are planning to go to the
University scon to do either mathematics or computer science, think again. Do bothl

OGO O



