H.S.C. CORNER BY TREVOR

In this issue we first look at two problems, set in 1985, which use mathematical induction. Firstly, from the 3 unit paper,

Problem 86/4. Use the principle of Mathematical Induction to prove that

 $5^{n} + 2(11^{n})$ is a multiple of 3 for all positive integers n.

<u>Solution</u>: Students should be familiar with the mathematical induction steps, which are:

- Step 1. Assume the proposition P(k) is true for an integer k.
 - 2. Prove that P(k + 1) can be deduced from P(k).
 - 3. Prove that P(1) is true.
 - 4. Then P(n) follows from steps 1, 2, and 3.

In this problem the steps are as follows:

- 1. Assume that for a positive integer k, $5^k + 2(11^k) = 3N$ where N is some integer. It follows that $5^k = 3N 2(11^k)$.
 - 2. Now <u>consider</u> $5^{k+1} + 2(11^{k+1}) = 5(5^k) + 22(11^k)$ = $5[3N - 2(11^k)] + 22(11^k)$ = $15N + 12(11^k) = 3[5N + 4(11^k)]$

Thus, if $5^k + 2(11^k)$ is a multiple of 3, then $5^{k+1} + 2(11^{k+1})$ is also a multiple of 3.

3. For n = 1, $5^n + 2(11^n) = 5 + 22 = 27$, which is a multiple of 3. Thus, by induction, $5^n + 2(11^n)$ is a multiple of 3.

<u>Problem 86/5</u>. From the 4 unit paper.

a) Show that for k > 0,

$$2k + 3 > 2 / \{(k + 1)(k + 2)\}.$$

b) Hence prove that for n > 1,

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > 2[\sqrt{(n+1)} - 1].$$

c) Is the statement that, for all positive integers N,

$$\sum_{k=1}^{N} \frac{1}{\sqrt{k}} < 10^{10}$$

true? Give reasons for your answer.

Solution. a) Let A = 2k + 3, $B = 2/\{(k + 1)(k + 2)\}$, and, since k > 0, A > 0, B > 0. Then

$$A^{2} - B^{2} = (2k + 3)^{2} - 4(k + 1)(k + 2)$$

$$= 4k^{2} + 12k + 9 - 4k^{2} - 12k - 8$$

$$= 1.$$

Hence $A^2 > B^2$, and since B > 0, A > 0, it follows that A > B.

b) Let
$$S(k) = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + ... + \frac{1}{\sqrt{k}}$$
. Assume $S(k) > 2[\sqrt{(k+1)} - 1]$.

Then $S(k + 1) = S(k) + \frac{1}{\sqrt{(k + 1)}}$

$$> 2[\sqrt{(k+1)} - 1] + \frac{1}{\sqrt{(k+1)}} = \frac{2k+3-2\sqrt{(k+1)}}{\sqrt{(k+1)}}$$

But from (a), $2k + 3 > 2/\{(k + 1)(k + 2)\}$, and hence

$$S(k+1) > \frac{2/\{(k+1)(k+2) - 2\sqrt{(k+1)}\}}{\sqrt{(k+1)}} = 2\{\sqrt{(k+2)} - 1\}$$

after cancelling $\sqrt{(k+1)}$, which is a common factor in the numerator.

But S(1) = 1, and, for k = 1, $2\sqrt{(k+1)} - 2 = 2(\sqrt{2} - 1) > 1$. Hence

$$S(n) > 2[\sqrt{(n+1)} - 1]$$

c) No. For example, simply let $N = 10^{30} - 1$. Then

$$S(N) > 2\sqrt{10^{30}} - 2 = 2(10^{15}) - 2 > 10^{10}$$

Note that the result in (b) is that S(n) becomes infinitely large as $n \to \infty$, thus proving that the series diverges.

This issue we also have space to examine the two geometry problems. From the 3 unit paper.

<u>Problem 86/6.</u> P. Q are points on a circle and the tangents to the circle at P, Q meet at S. R is a point on the circle so that the chord PR is parallel to QS.

- a) Draw a neat sketch in your answer book, showing the given information.
- b) Giving reasons, prove carefully that QP = QR.

<u>Solution</u>. The key to any geometry problem is a good diagram, covering an area of at least 6cm × 8cm of your answer book. Your diagram should look something like thus:

Join the points RQ, QP as in the figure, then, if we are to prove QP = QR, we need to prove Δ PQR is isosceles. The proof should be written out as follows:

RP//QS (given) therefore \(\text{RPQ} = \text{/PQS} \) (Corresponding angles).

But SQ is a tangent at Q (given)

therefore \(PQS = \(PRQ \) (alternate segment theorem)

therefore \(\text{RPQ} = \text{\text{PRQ}} \)

therefore APQR is isosceles

therefore QP = QR

A more difficult question from the 4 unit paper:

<u>Problem 86/7.</u> In an acute-angled triangle with vertices L, M, N, the foot of the perpendicular from L to MN is P, and the foot of the perpendicular from N to LM is Q. The lines LP, QN intersect at H.

- α) Draw a clear diagram showing the given information.
- β) Prove that /PHM = /PQM.
- r) Prove that $\angle PHM = \angle LNM$.
- δ) produce MH to meet LN at R. Prove that MR \perp LN.

Solution: a)

 β) The two required angles would be equal if P,H,Q,M, all lie on a circle - so we need to prove that these points are "concyclic". The formal "proof" is as follows.

Consider the quadrilateral PHQM

$$\angle HPM = 90^{\circ}$$
 (given), $\angle HQM = 90^{\circ}$ (given)

therefore /HPM + /HOM = 180°

therefore PHQM is a cyclic quadrilateral

therefore $\angle MQP = \angle MHP$ (angles in the same segment) (A)

 γ) Note that \angle MQP is the external angle of the quadrilateral LNPQ, so we need to prove

that LNPQ is a cyclic quadrilateral. The proof is as follows:

Consider the quadrilateral LNPQ

$$\angle LQN = \angle LPN = 90^{\circ}$$
 (given).

These are angles in the same segment, therefore L, N, P, Q are concyclic.

Therefore \(\text{MQP} = \(\text{LNP} \) (ext. angle of a cyclic quad.)

Thus, from (A) and (B), it follows that

∠PHM = ∠LNM (since MPN is a str. line)

8)

We have proved that $\angle MHP = \angle RNP$. Hence RNPH is a cyclic quadrilateral (ext $\angle = int. opp \angle$).

Hence $\angle HPN + \angle HRN = 180^{\circ}$ (opp $\angle s$ are supplementary)

But $\angle HPN = 90^{\circ}$ (given)

therefore /HRN = 90°

therefore MR _ LN

We have actually shown that the three altitudes of an acute angled triangle meet at a single point. The point H is called the "orthocentre" of the triangle.

$$\Diamond \Diamond \Diamond \Diamond \Diamond \Diamond \Diamond$$