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SOLITONS — THE WAVES OF THE FUTURE?
by
R. Grimshaw*

One of the more fascinating and unexpected discoveries of modern mathematics is
the soliton. A single soliton is a solitary wave, that is an isolated disturbance of
permanent form which propagates with constant speed. Such waves can be cbserved on
the surface of water, or as <c¢loud lines in the atmosphere, or in other physical
systems. The existence of solitary waves has been known for over a hundred years.
However, we had to wait for the advent of the computer before the fascinating
properties of the soliton were unravelled. Before the discovery of the soliton the
conventional wisdom concerning waves was that waves could be divided into two
categories, linear and nonlinear. Linear waves were of small amplitude (more
precisely, infinitesimal amplitude)}, interacted by resonant mechanisms, exchanging
energy wuntil "thermalization" occurred; that is loosely speaking, after a leong time
any one kind of wave is as likely to be present as any other kind, while detailed
knowledge of the initial state was lost. The discovery of the soliton has changed
this. Solitons are nonlinear waves, which remain coherent after interaction. Indeed
they interact according to well-defined nonlinear superposition ;hles, and have a
variety of fascinating properties. Further, far from being rare phenomena of
curiosity wvalue only, they are rather common. Under certain quite general condi-

tions, a large class of initial states will always produce solitons.

The first reported sighting of a solitary wave was made by John Scott Russell in
1B34:

"I believe I shall best introduce this phaenomenon by describing the cir-
cumstances of my own first acguaintance with it. I was observing the motion of
a boat which was rapidly drawn along a narrow channel by a pair of horses when
the boat suddenly stopped - not so the mass of water in the channel which it had
put in motion: it accumulated round the prow of the vessel in a state of violent

agitation, then suddenly leaving it behind rolled forward with great velocity,
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assuming the form of a large solitary elevation, a rounded, Smooth and well-defined
heap of water, which continued its course along the channsl apparently without change
of form or diminution of speed. I followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving its original
figure some thirty feet long and a foot to a foot and a half in height. 1Its height
gradually diminished and after a chase of one or two miles I lost it in the windings
of the channel, Such, in the month of August 1834, was my first chance interview

with that singular and beautiful phaenomenon ...
John Scott Russell (1845)

Russell was an eminent Victorial scientist who like other outstanding scientists of
that era, was capable of combining accurate observations with imaginative Experiment$
and simple theories, together producing considerable insight. He subsequently under;
took some laboratory experiments and established that all solitary waves were waves
of elevation and that the wave speed increases with wave amplitude. Thus solitary
waves are nonlinear waves, since linear waves are usually oscillatory (i.e. the wave
displacement can take either sign) and have wave speeds which are independent of
amplitude. Russell’s observations caused some controversy as the prevailing theory
at that time (due to Airy) was that nonlinear waves of elevation will steepen and
eventually break. Such was the pace of science in the Victorian era that it was not
until the 1870’3 that the controversy was resolved in Russell’s favour by a French
mathematicician, Boussinesq, and by Rayleigh in England. They showed that the ten-
dency for nonlinear waves to sSteepen (i.e. the larger amplitudes of the wave want to
go faster) could be exactly belanced by the tendency for waves to disperse (i.e. the
waves of shorter wavelengths want to go slower). In fact they showed that the equa-

tions of motion for water waves had an approximate solution, given by

n=a sech2 {pi(x = ct}}

where n 1is the free-surface displacement above the undisturbed level h (see Figure

1). x 1s the horizontal co-ordinate in the direction of wave propagation, and t is

the time. Here sech x = (cosh x}-l (recall that cosh x = 1!2[ex + e_x)} and has the
characteristic shape shown in Figure 1. ©Note that sech x > 0 for all x, has a maxi-
muim wvalue of 1 at x =0 and - 0 as [x| = =. Also note that n, given above, is a
function of =x and t through the single combination x - ct, and so describes a wave
propagating to the right with speed c. Now follow the two key properties of the

solitary wave.



Here ¢, = Ygh (g is the acceleration due to gravity) and is the speed with which

s wave of infinitesimal amplitude and infinite wavelength would travel. The first of

these expressions shows that the speed c of a solitary wave is greater than co, and

increases directly in proportion to the wave amplitude a. The scond expression shows
that the solitary wave has infinite width, being defined for = = < x < =, but we can

define an effective width to be 1/p).

Some two decades later in 1895, two Dutch mathematicians, Korteweg and de Vries,

showed that the "3ech2"-wave, described in the previous paragraph, is a solution of
the following equation
3
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Naw M is a function of two independent variables x, t so that n = ni(x,t). The
notation an/dt denotes the derivative of n with respect to t while x is kept fixed,
and an/ax denotes the derivative of n with respect to x while t is kept fixed. This

is a partial differential equation, now known as the Korteweg-de Vries equation, or

. 2 .
KdV for short. It is a simple mater to verify that the "sech " -wave of the previous

paragraph is indeed a solution of the KdV equation. (Note that the derivative of

=M
sech x is - sech x tanh x where tanh x = sinh x/cosh x and sinh x = 1/2(e” - e )}.
For the next seventy years that was the end of the story. The solitary wave was
regarded as a curiosity, mentioned briefly in some text books and not at all in

others.

All of this changed in 1965 when two mathematicians in the U.S5.A., Kruskal and
Zabusky, decided to have another look at the KdV equation. Being interested in the
proccess by which nonlinear waves interact and exchange energy, they integrated the
KdV equation numerically and found instead of "thermalization", almost total
coherence. To describe their results the KdV equation is first transformed by put-

“ting ul(x,t) = 3n{(x’, t")/2h where x' = h(x + 6t), t° =6 h tfco. The result is the

canonical KdV equation



The solitary wave solution of this equation is

u = 2k2 :ech2 (ki{ix - dkzt)].

and depends on the single parameter k: it has amplitude 2k2 and speed 4k2. Kruskal
and Zabusky found numerically that an essentially arbitrary initial disturbance (i.e.
u{x,0)) evolved into a finite number of solitary waves ordered according to their
amplitudes (recall that the larger waves travel faster). Further they found that
these sclitary waves interacted "elastically™. As a larger wave overtook a small
wave, there was a nonlinear interaction, from which both waves emerged unchanged in
form (i.e. with the same amplitudes and speeds). The only remnant of the interaction
is a phase shift with the larger wave typically being shifted forward. Figures 2 and
3 show some computer-generated solutions of the KdV equation which exhibit these
properties. Because of these particle-like propoerties of solitary waves Kruskal and

Zabusky coined the word soliton to describe them.

Now that the computer had uncovered the phenomenon, theoreticians got to work
and soon unravelled 5some remarkable properties of the KdV equatigp. There is not
space to describe all of these here. However, the cornerstone of the KdV theory is
the following isospectral property. Consider the ordinary differential equation for
vi(x).

2
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Here u(x,t) 4is a solution of the KdV egquation and A is a "constant" (i.e. independ-
ent of x, but may depend on t). With appropriate boundary conditions as |x| =+ B ,
this equation is a linear equation for y which contains t as a parameter. Cnly
certain values of A are allowed if solutions are to exist, and these constitute the
spectrum. Indeed this equation for y is a well-known equation occuring in a variety
of physical contexts. For instance it occurs in quantum mechanics where it is known
as the Schrodinger equation; y describes the state of an atom, u is a potential well
and A is related to the energy levels. Here, since u(x,t) evolves in time, always
satisfying the KdV equation, the "constant™ A is also expected to evolve in time.
However, in 1967 a group of mathematicians from the U.S.A., Gardner, Greene, Kruskal

and Miura, made the astonishing discovery that A is a constant (i.e. does not depend



on the time). Even though ui{x,t) evolves with time t, A remains constant, and is

determined once and for all by the initial state, u(x,0). Further, they showed that

this initial state determines N values of A, - kzl. ——==, = k N’ and that as t — = ,
the solution of the KdV equation is given by
N . B 2 2
u(x,t) = L 2 k sech [k (x - 4k t +x)}, asa t = =
1 n n n n

This describes a train of N solitons, with amplitudes 2k2n and speeds 4k2n '

n =1--- N, 1In Figure 2 we see a case when N = 3. The remaining part of the solu-
tion as t -—» = consists of small scale oscillations, which propagate to the left, and

ultimately decay. Thus the final state of the system consists of N solitons.

Several other properties follow. For instance, with a suitable choice for the
initial state (i.e. u(x,0)) solutions can be constructed which are ccompletely free
of oscillations. These are exact solutions of the KdV equation, are known as the N-
soliton solutions, and describe a set of N-interacting solitary waves. For instance,
an example of a 2-soliton exact solution of the KdV equation is

Y % 12 [3 + 4 cosh {2x - 8t) + cosh (4x - 64t}1
[3 cosh (x - 2Bt) + cosh (3x - 36t}]

u{x,

corresponding to k1 = 2, kz = 1. Remarkably it took over seventy years from the

discovery of the solitary wave solution of the K4V equation to the realization that
it was Jjust the first member of a whole family of exact solutions. Equally
remarkably, it is clear that this 2-soliton solution could hardly have been guessed.
Figure 3 shows the graph of this solution. Note that as t = % =,

ui(x,t) = B sech2 {(2x - 32t % 2:1:1} + 2 sech2 {x - 4t * le

1n 3. To verify these expressions, first put x - 16t =

B =

where X, = 7 ln 3 and x, =

{ and then take the limit t.:LE « with { fixed: then repeat with x = 4t = {. Thus
the 2-soliton solution deﬁcr1bes the interaction of 2 solitary waves, in which the
larger overtakes the smaller, interacts nonlinearly with it (at about t = 0), and
then both waves emerge intact. The only remant of the interaction is a phase shift,

ddescribed by the constants xl and x,- Here the larger wave has been shifted forward

by E In 3 and the smaller wave shifted back by 1ln 3. A Japanese mathematician Hirota

has obtained a simple elegant expression for the N-soliton solution. it is
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uix,t) = 2 1—; 1n [det (I + }P].
ax

where I is the N x N identity matrix and P is the N x N matrix whose (n, m} element
is

dndrn 3 3
nm o + .
{kn+ km) exp [ {kﬂ + km] x + dtkn km.} t]
2 2
Here - k il k - are the N values of A introduced above and dl' —— dH are

certain constants arising from the solution of the ordinary differential equation for

v.

Thus, following the initial discovery of the soliton by Kruskal and Zabusky, it
rapidly became clear from these properties, and other equally interesting results
that the scliton was the key ingredient of the KdV equation. However, the true’
significance of the soliton only became apparent with two further developments,
First was the recognition that the KdV equation was not just a model for the propaga-
tion of waves on water, but occurred in a wide variety of physical systems, and
amongst other applications, described waves in lattices, plasmas, elastic rods, and
in the atmosphere and ocean. Further, it was found that the KdV. equation is not
alone in possessing these remarkable properties, and many other differential equa-
tions describing nonlinear waves po33e3s similar properties. The solitary wave has
come a long way since Russell’s first observation. It is appropriate to conclude
this short review with a picture (Figure 4) showing one of the more dramatic
naturally occuring solitary waves. It is an atmospheric wave, marked by the line of
cloud, moving horizontally on a low-level inversion layer. It occurs often in the
Gulf of Carpentaria region of northern Australia, where it is known as the "Morning
Glory", since it typically appears early in the morning. The picture was taken at
Bourketown and the wave is propagating towards the observer. These waves are often
of very large amplitude and have been observed to propagate over large distances.
They are a significant component of tropical meso-scale meteorology and in some

instances have been identified as potential aviation hazards.
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Figure 1: The co-ordinate aystem. Here =z is a vertical co-ordinate, and the

fluid has undisturbed depth h. The solitary wave has displacement n.

Figure 2: A plot of the evolution of three sclitons from the lnitial conditien
shown. The plot 4is obtained by numerical integration of the KdV
equation. The wvery small oscillations seen entering the domain from

the right-hand boundary are due to numerical noise. However the oacil-
lationa in the bottom left-hand corner are genuine, and are the left-

propagating decaying oscillations.
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tigure 3:

Figure 4:

- 1 and k_, = 7.

2-seliton interaction for the case 11

A plot of the

Mote the phase ahift near t = 0.
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The ™"Morning Glory™ of the Gulf of Carpentaria.

The cloud line marks

the position of the wave which i3 propagating towards the obhserver at

about 10m/=s



