Parabola Volume 23, Issue 3 (1987)

HERE, THERE AND BACK AGAIN - QUICKLY.

John Murray¥*

Going from one place to another can be a difficult problem. You get halfway
there and you often realise that it would have been a lot quicker if you had taken
another way (you also remember you’ve left something you wanted to bring at home and
have to go back to get it, but lapses of memory are a different problem to the mathe-
matical ones we are going to look at). How do you choose the best way to get
someplace? Let's look at the easiest problem first and see how that works out before

getting caught up in the fancier one.

Suppose you want to drive from Sydney to Melbourne along a sequence of roads of
shortest total distance. To make it easier to describe we will name a section of
road using the two major towns it joins. If there is more than one road joining the
two towns, choose the shortest one and ignore the others. Then our shortest path may
lock something like this

Sydrey Mittagong Meloourne
O o2 O- ——

The circles represent the towns and the lines represent the roads joining them. The
length of the trip is obtained simply by summing the road lengths of this particular
sequence. If you want to represent all the reasonable trips, then rather than draw-

ing them as above you could put them on one picture, much like a road map.

)

Beathurst

*John is an applied mathematician at the University of New South Wales.

- 2 2

Then any realistiec trip consists of tracing out a path through the above network
where no town is visited more than once. With such a network one can easily calcu-
late the length of any chosen path by once again simply summing the lengths of the
roads that make up that particular path.

These pictures and related questions appear in many different guises and in a
wide array of applications so it is not surprising that an area of mathematics has
been carved out to analyse and solve them. They belong to the topics of operations
research or combinatorial optimization and more specifically are called graphs or
networks. So let us use the conventional terminology and call the above drawing a
network, the small circles representing the towns nodes and‘the roads joining the
towns arcs. A path will consist of a sequance of connected arcs and its length will
be the sum of the path’s component arcs. Our problem then is to find a path of
minimum length, from the node representing Sydney to the node representing Melbourne.

For a network with a very small number of nodes you can probably see straight
away the optimal solution. For instance if we want to find the path of shortest’
length from noede 1 to node 5 in the following network we could test all possible
paths and determine that the optimal sequence of nodes is 1, 2, 5.

However the number of possible paths quickly gets out of hand when we increase
the number of nodes and arcs, and even the fastest computer would find it impossible
to search through all feasible paths to find the shortest one. To get an idea of the

size of the problem you may like to try the following exercise due to Victor Klee.

Exercise

Consider a network with an origin, a destination, and 100 additional nodes, with
each pair of nodes connected by an arc. Show that the number of different paths

(without repeated nodes, of course) from origin to destination is

100! + 100 (99!) + (1;0] (981) + ... +[1gg] 21 4+ 100 + 1

3

where the nth term counts the paths from the origin to destination which omit n-1 of

the other nodes. Show that this sum 4is the greatest integer in 100!e. Use

Stirling’s formula to represent 100! in the form a.lob where b is a positive integer,

1< a< 10 and- a is accurate to two significant digits. Stirling’s formula asserts

¥2x nﬂ+1'f2 e " < n! < V2x nn"‘l"‘2 " [1 4+ %n].

{Here ex denotes "exponential x" or "e to the x" and 1s defined to be the sum of the

series

x 2 x3
1+ ¢ 2 4 X

11 21 T A

When we let x = 1 we obtain the value of 2.718 ... for e.)

S0 even though the problem could hypothetically be solved by looking through the
finite number of possibilities, this number for problems of reasonable size is so
large as to make this method totally impractical. Since we want to find a method
that will obtain the optimal solution in a reasonable amount of time and not search
through all possibilities there must be some underlying structure to the method to
guarantee that the answer will be optimal. For our problem of shortest paths it
turns out that the best general way to calculate shortest paths from an origin to a
destination also calculates the shortest paths from the origin to all other nodes.

Let’'s see how one such method, Dijkstra’s method, works on our previous small
example .

> g

Let uj = the length of a shortest path from node 1 to node 1.

Well we obviously have My = 0. We then search for the closest node to 1. This

is node 2 and we have u, = 5. Now try to find the next closest node to node 1. It

is either connected directly to node 1 or is the closest node to node 2. Both of

these happen to be node 3 and its u value is the minimum of 6 and 5 + 2. So ug = 6.

The next closest node to node 1 is obtained by finding the closest nodes to 2

and to 3 which are 4 and 5 respectively. But u, + 3 =18¢< u3 + 8 = 14 a0 node 4 is

next in line and we have u4 = §. In the next and last step we compare the three

values u, + 7 with u3 + 8 and u, + 6 the smallest of which is uz + 7 and =0 u5 = 12,

We have now found the shortest paths from node 1 to all other nodes and in particular

to node 5.

If you think about the way we worked from the closest nodes outwards you might
be able to see why we have actually found the shortest paths without having to search
through all possible paths. Anyway there is an underlying "Principle of Optimality"
on which Dykstra’s method is based which guarantees optimality..

In the calculation in our example, each step involved some comparison of values
and psome additions. For the general method on a network with n nodes, and arcs
joining each pair of nodes (a complete network) an overall total of {n-1) (n-2) com-
parisons and (n-1) (n-2)/2 additions are necessary. This gives us an idea of how much
work is required in the worst case (there are as many arcs as possible to find all
shortest paths from the origin node. This is one way in which an algorithm can be
judged. Not only should it find the correct answer but it should do so without a
prohibitive -amount of calculation. Our first so-called method where wa checked
through all possible paths found the correct answer but certainly not in a reasonable
amount of time.

So Dijkstra’s method seems reasonable. For a 102 node, complete network as in

the exercise it requires 15,150 calculations which would take a personal computer

about 0.15 seconds of computation time to carry out at the rate of 105 operations per
second. At this same rate it would take a network consisting of at least 250 nodes
before we used up one second of computation time. The time taken for Dijsktra’s
method is given by the number of calculations required divided by the number of
calculations the computer can perform in each second. Since the divisor is so large

the term in the numerator that plays the biggest part in determining the time taken

y 2
is the largest power of n which in our case is 3/2n . As n gets larger and larger
this term will swamp out in magnitude the contributions from the other terms in the

numerator (in our case these are - 2% and %). This is why Dijkstra’s method is

called an order n2 (written Otnzll algorithm, In general an O{nzl algorithm takes

longer than an 0O(n) algorithm for the same value of n {for large values of n

usually) . For example if we have an algorithm that performs a task using 50p-3

operations and one that takes 5n2 + 3n-2 operations then on ocur computer the first
algorithm could solve problems for n as big as 2000 in one second of computation time
whereas the second could only handle problems for n up to about 140 in one second.
If you had a cheice about which algorithm to use you would certainly use the first
one; it is a lot quicker and can handle much larger problems in the same amount of
time. You can also see, at least in this example, that the constant multiplying the
leading power of n was not that important. It was the largest power of n that deter-

mined how "good" the algorithm was. Extrapolating the previous reasoning, we see

that an O(nsl algorithm is better than an Otn7] algorithm and so on.

Now let’s look at a different problem that is also related to finding the
shortest way around a network. It is called the travelling salesman problem and
deals with a salesman who must visit a collection of cities. This particular sales-
man is very efficient minded and so he wants to visit all the cities but each one
only once and then return to the city from which he started, and where he presumably
lives, He also wants to choose such a "tour™ that minimizes the total distance; so
no other possible tour would be shorter. In terms of a network this translates into
starting at some particular node, visiting all other nodes of the network once and
only once and then returning to the original node. Of all such tours, find the
shortesat one. In some ways this problem sounds similar to the problem of finding

shortest paths between nodes, but with a few extra conditions.

If the salesman has to travel the following network starting at node 1, then a

possible tour is given by the darker arcs.

The length of that tour is 31.

It turned out that the number of possible paths in the shortest path problem
quickly got out of hand. Maybe the added restrictions on a tour cuts down the number

b

of possible tours enough so that for problems where n is not too large we could
possibly check through all tours to find the optimal one. Unfortunately this is not
true. For a complete network with n nodes there are (n-1)! possible tours so even
for a 10 c;ty problem the number of possible tours is 362,880 and since each tour
would require nine additions this would mean a total of 3,265,920 computations which
is more than 200 as many as required by Dijkstra’s method to find shortest paths for
a 102 city problem. The largest travelling salesman problem ever solved had 318

cities which gives approximately 10655 possible tours. Assuming that we could pos-

637
years

aibly enumerate 109 tours per second on a computer, it would take roughly 10
of computing to establish the optimality of the best tour by exhaustive enumeration.

To put this in perspective, one estimate of the age of the universe is only ¥

-

years.

From the last example you might guess that the travelling salesman problem is
not as easy as it sound - and you would be perfectly correct! The difficulty is that
no one has been able to find a method that will calculate the optimal solution and do
it efficiently. And what is worse is that we do not know 1f such a method exists.
All possible methods may be “bad”.

Before we go any further I suppose we should define what we mean by good and bad
methods. Dijkstra’s method was O{nzl and seemed to handle quite large problems

fairly easily. Even if we had a method that was O{n?) say, the computation time
would not grow too quickly as the size of the problem grew. Any algorithm that is

o(nk} for some integer k is called a polynomial time algorithm. Remember an algo-
rithm i=s O(nk) if it requires cknk + ck_lnk-11 -+ cln + c, single operations to
find the optimal solution, where Cyr Cor sue ck are constants and n represents the

size of the problem (for instance the number of citles). There are methods that

require say " calculations to solve the problem. This then would be 0{2“1 and is

called an exponential time algorithm. If you graph a polynomial like nl'il against an

exponential function like 5" you see that before too long the exponential function is
much larger than the polynomial function. That is why we call polynomial time algo-
rithms good and exponential time algorithms bad. If you look at the following table
taken from Garey and Johnson [1] you see that for the polynomial time algorithms the
time taken, as the problem size increases, grows at a reasonable rate while for the

exponential time algorithms it explodes.

&

Size n
Time
complexity 10 20 30 40 50 60
function
00001 00002 00003 00004 00005 00006
A second | second second second second second
4 0001 0004 0009 L0016 .0025 0036
second | second second second second second
2 001 008 027 064 125 216
second | second second second second second
58 i 12 4.3 1.7 5.2 13.0
second | seconds | seconds | minules minutes minutes
o .001 1.0 179 12.7 157 366
second | second | minutes days years centuries
3n 059 58 6.5 3855 2x10° 1.3x10¥
second | minutes years centuries | centuries | centuries

It is also disturbing that not even faster computers will help much for exponen-
tial time algorithms. The following table, alsc from Garey and Johnson [1] shows the

meagre improvement a computer 1000 times faster would make.

Size of Largest Problem Instance
Solvable in 1 Hour

::rc:mlcxity With present | With computer With computer
function computer 100 times faster | 1000 times fasier
n N 100 N, 1000 N, |
n? N, 10 N, e N,
n? 1A 4.64 N, 10 Ny
n’ N, 2.5 N, 3198 N,
Fid N Ns+6.64 Ny+9.97
K [Ny Ne+4.19 ~ Ne+6.29

So it seems reasonable to call polynomial time algorithms good and exponential
[Bgorithms bad. Coming back to the travelling salesman problem, we have no polyn&-
mial time algorithm to solve it and do not know whether one exists. Many of the
algorithms that at least come close to finding the optimal solution are exponential
time algorithﬁa and therefore cannot handle problems that are too large. Hence the
318 city problem is the largest that has been solved so far.

Now that we have commented on the difficulty of finding a solution to the
travelling salesman problem let us at least look at a method that certainly does not

guarantee finding an optimal solution but uses some criterion to find, hopefully, a
reasonable one.

The Nearest Nelghbour Algorithm generates a tour as follows.

Starting with the origin node add the nearest node as the next node visited.
Then add the closest node, not already included, to the last one.

Continue 1like this wuntil all nodes have been connected, and then connect the
last node added to the origin node.

Applying this to the last network we generate the following tour.

This has length 27, Notice that unless we are dealing with a complete network we
can‘t even be sure of generating a tour with the Nearest Neighbour Algorithm. For
instance if there were no arc between nodes 2 and 6 the method would not have suc-

ceeded in finding a tour for this simple network. So just finding a feasible tour
can be difficult,

Some of the more sophisticated methods find an initial tour and then try to

change parts of it to decrease its length, always in such a way so that we still have
a tour.

Part of what’s frustrating about operations research is that the problems are

often extremely simple to state and in some cases, like the shortest path problem,

ol

are easy to solve but in other cases, like the travelling salesman problem, no effi-
cient method has been found for them and there is a good deal of debate whether there
iz a polynomial time method that will do so. If you ever see the cryptic notation P
= NP7, that‘ is what they are asking, where P stands for polynomial time algorithms
and NP for a glaas of non polynomial time algorithms - it turns out that question is
equivalent to "Is there a polynomial time algorithm that will solve a special,
simpler travelling salesman problem?”™

So if you are going on a one way trip to say Melbourne then you should have no
problem in finding the quickest way there. On the other hand, if you plan a return
trip with lots of other towns along the way and do not want to revisit any of them,
then you had better start calculating the shortest route now. You will need all the
time you can get.

M.R. Garey and D.S. Jochnson "Computers and Intractability, A Guide to the theory of

NP - Completenesas”, Freeman, 1979.

THE BAG OF THE MISSING BALLS.

The concept of the infinite has puzzled and fascinated mathematicians from
ancient times. There are a great number of "paradoxes™ based on it perhaps the most
famous being that of Achilles and the Tortoise. Here is something a little
different.

Supppose I have a bag (a very big bag for it is to hold a great number of
balls). At 1 minute to 12 I place in it 10 balls labelled 1 to 10, but then I simul-

taneously take out ball 1. At %-minute to 12 I add in balls 11 to 100 but take out

ball 2. At % minute to 12 I add in balls 101 to 1000 but take out ball 3. And I

continue so that at the nth stage, just 1;2“'1 minutes before 12 I add in balls

1

numbered 10" "+ 1 to 10" but dutifully take out ball number n.

I want to know how many balls are in my bag at 12 o’clock for I'm having trouble

finding just one. Is it possibly empty?

- 10 -

