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HOW TO CALCULATE COSINES

By Bill McKee

Have you ever wondered how your calculator or computer finds quantities such as

3in(63°) or tan{lTO}? These trigonometrical quantities are first introduced to us in
terms of the ratios of the sides of triangles. What is (almost) certain is that our
calculators do not contain a 1little gnome who constructs triangles, measures the
ratios of the sides and then tells us what we wanted to know. How then do our
calculators find the values of trigonometrical functions? The first thing to realise

is that our calculators only give us approximate values. This is illustrated by the
simple example of uin{ﬁonl which, as everybody knows, has the value 43!2. Now the
decimal representation of *3', and hence of 45?2, does not terminate, i.e. it goes

on for ever; the first part of it being V3/2 = 0.86602540378444 ...

My calculator gives sin(60°) = 0.866025403 and so is only giving me an

approximation to aintﬁool. For almost all practical purposes, this is more accuracy
than is required; four or five decimal places are usually sufficient. As a matter of
principle, the approximations to trigonometrical functions, and other functions such
as logarithms, given by computers and calculators should be correct to the number of
decimals displayed and my calculator is wrong in the last decimal place since the

last figure should have been rounded up to 4. How then do calculators find these
approximations?

We will illustrate the principles which underlie the methods used by considering
the cosine function cos @ where @ 1is an angle measured in degrees and
0 <@ s 9. You should be able to show quite easily that, if we know cos @ for
0 £ 8 5 r/2, we can readily find cos 8 for any other angle 6. Now, degrees are not
the most natural ways in which to represent angles because we humans arbitrarily
decide to wuse this measuring system which assign 90 degrees to one right angle.

Far more fundamental is radian measure which assigns =x/2 radians to one right angle.

* Bill is a member of the Department of Applied Mathematics at the University of
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Thus, if an angle is @ degrees, its wvalue in radians is x where x =x @ /180,

For those of you studying calculus expressing things in radians makes derlvatives

simple, e.g.-g; {cos x) = - s3in x and g; (sin x) = cos x.

From now on, we will use radians and consider cos x. The basic idea used in

approximating cos x is that cos x can be shown tc have an infinite series expansion
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We recall that, for any positive integer n, the factorial n! is defined by

n! = n(n-1}) ., 3.2.1 ,
i.e., it is the product of all the positive integers less than or egual to n. It is
also convenient to define

0t = 1,

The serles- (1) is an infinite series, i.e., it goes on for ever. It would take a
computer or calculator an infinite time to sum the series because each operation
takes a finite time to perform. We cannot afford to wait that long and so the best
we can do is chop (1) off after a finite number of terms and so find
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for some integer N. It can be shown that for any given x we can make SN(x} as

close as we like to cos x by taking a sufficiently large number of terms in (2),
that is, by making N large enough. 1In fact, some fancy manipulation can be used to

show that the error in (2) 4is less in magnitude than the first neglected term, that

is,
2N+2 +
X < Ccos % - SN(xI < xZN 2
(2N+2) ! (2H+2) !
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for 0 < x < /2,

This tells wus how many terms to take in order to get any specified accuracy. It
would be wasteful to use more terms than are needed. As an exercise, you might like
Lo work out the smallest number of terms in (2) that would be sufficient to find

cos (1) correct to 7 decimal places.

Well, how good is the series (2)7 In the first figure we show graphs of cos x

and
xz
Sltxl = ] - ;‘;‘ =
x‘
52|Ix'j - 51{::} + -I_'
=
and Ssixl = 32(11 - 61 i

0 45 e 90

The solid line is cos x and is correct to about 14 decimal places. The lower dotted
line is 31{x1 - You might be able to distinguish the upper dotted line which is

S2 (x)  just above the solid line. The third dotted line 33{1:) is indistinguishable

from cos x on the graph. This does not mean that 5311-;} = cos x but merely that our
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eyes cannot tell them apart on the scale of the graph. Note also that the scale on

the abscissa is expressed in terms of degrees @ = 180 x/x.

You will also notice that the errors in our simple approximations

Sl(x} and Sztx! are very small near x = 0 but increase as » increases. In fact we

can get a better overall aporoximation for 0 s x £ x/2 by fiddling a little with
the coefficlents. We will fllustrate this fact by considering szixl‘ If we adjust

It-

the coefficient of x? from - = -0.5 to = 0.49670 and that of x‘ from

)

E%_T = 0.04166 .. (repeating) to 0.03705 we get the approximation

thxj =1 - 0.4967032 + 0.03705x‘ which is not quite so accurate near

x = 0 but is much batter for larger values of x and so gives a better overall
approximation to cos x for 0 s x $ x/2 . This is illustrated in the second figure
which shows the error in szlx} {i.a. Szix} - cos x}) by a dotted line and the error

in thxl by a solid line. Again the abscissa is expressed in degrees 0.Taking 55
{x), i.e,, including terms up to xlo in (2) and adjusting the coefficients slightly
gives an approximation to cos x whose worst error for

0 xs af2 4s less than 10-a in magnitude. This is generally enough accuracy.
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Well, we have seen how to calculate cos x approximately. What about the other

trigonometrical functions? You might like to experiment with the series for sin x
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sin x = ¥ g-l!n x2n

n=0 {(2n+1) !

- x—xa."a! +J¢5f5 !- s o.

The series for tan is a little nastier since there is no simple expression for

the general term. The first few terms are given by

3 5 7
x 2x 17x
tan x X + 3 + 15 + 315 i, -

Remember that in all of these x is expressed in radians. Happy computing!

Editor’'s footnote. Trigonometry goes back a long time. For example the Greek

astronomer Hipparchus of Nicaea (¢ 180 - cl25BC) who is often called "the father of
trigonometry™ was probably the first to compile trigonometric tables. These tables

listed the corresponding values of arc
ADB and chord ACB for a series of

angles. Earlier Aristarchus of Samos (c
D 316 - 230BC) had used trigonometry to
estimate, for example, the relative

distances of the sun and moon from the

earth. Later the ancient world’s

greatest astonomer Ptolemy of Alexandria
(who was alive in the lst half of the lst century AD) published a "book™ which later
became known to us as Almagest (from the Arabic meaning "the greatest™). This work
was the astandard authority on astronomy/trigonometry for nearly 1500 years (and in
fact Copernicus largely relied on it even when he was overthrowing Ptolemy’s
geocentric theory of the solar system). With the decline of the old Greek
civilization it was the Hindus and especially the Arabs who kept mathematics alive.
Trigonometry was useful to both these peoples for religious reasons (astrology,
finding the direction of Mecca etc), and the Hindus started to work with the half
chord AC which is exactly our sine if the circle has radius one. Eventually (about
1200AD) the Arab mathematical libraries were tranalated into Latin for study in
Christian Europe. Although a number of early European mathematicians studied
trigonometry it was not until 1748 that Euler introduced dimensionless trig functions

by assuming the radius of the circle was one. He also gave us the seriles expansions

that Bill has used.
_1 5_



