Parabola Volume 24, Issue 1 (1988)

STATISTICAL MODELS FOR SURVIVR
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Survival of a cockroach is unfortunate, survival of an endangered species
is important, survival of a human (probably the least endangered species) is
essential, The young take survival to be their right; the old find survival an
absorbing interest.

Statistical survival analysis has been of interest to actuaries and statis-
ticians for centuries. The basic theory depends on a knowledge of the concepts

of probability and conditional probability.

Probability and concitional Probability

The wuse of the word probability is not unique being used by different
people to mean different things. Here the relative freguency concept of the
word is used. Suppose we have a long sequence of trials under ldentical condi-
tions, each trial not being influenced by results of previocus trials and each
trial resulting in S=survival or D=death. The probability of survival
is taken to be the limiting relative frequency of S in this long sequence of
trials and is denoted by Pr(s). We may, of course, estimate that limiting

relative frequency by the relative frequency of S5 over the finite number of
trials that we have,

What sort of trials would be appropriate here? If we are concerned about

survival of cockroaches (or blowflies) to insecticide then exposing 10009 random
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selected insects to a standard dosage would constitute 10000 trials under iden-
tical conditions. The proportion of survivors estimates the probability of
survival although it is usually percent kill that is reported. If we are

concerned about survival of sixteen year old males during their seventeenth year
then observing the survival experience of 10000 randomly selected sixteen year

old males would be given.

Conditional probability 4is an extension of this notion. Suppose sixteen
year old females are classified as brown/non-brown eyed and we want to refer to
the probability of survival of brown eyed females. Each trial may now be clas-
sified also as B=brown eyed, O=other female selected and the sequence of

trials is now subdivided into two subsequences based on eye colour.

The 1limiting relative frequency of survival in the brown-eyed subsequence is
called the conditional probability of survival given the female selected is b

rown eyed. It is denoted by Pr{(S|B) and

Pr(S|B) = limiting relative frequency of SB in the B subsequence

= limiting relative frequency of SB in original sequence

limiting relative frequency of B in original sequence
= Pr(SB) /Pr(B).

Crossmultiplying gives Pr(SB)=PR(B)Pr(SI|IB).

Now let wus return to survival of sixteen year old males. The probability
of survival in the seventeenth year applies only to males who have already
survived the first sixteen years. The probability estimated is then really the

conditional probability of Sl? given 5152..516 where Si is survival of the

,th
i year, It is denoted by P"51?13152 e 516]' If Di is the event of death

in the ithyear then an appropriate tree diagram is
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The total probability of surviving seventeen years is

PI{3132 ...317) - Pr{slsz ...SIG}Pr{SITIS 5 ...31

1°2 !

6

= Pr[SI]Prlszlsli ...Prt51T|5152 i slﬁ)'

The probability Pr(s,|S.§

118:8, "‘31-1) is called the age specific survival rate

for the ith year and one minus this probability is the age specific death rate
of hazard rate, Hazard rates estimated from recent Australian Bureau of

Statistics data for males and females separately give

Years 1 2-5 6-10 11-15 16-20
Males .01515 00076 .00037 .00040 .00150
Females 01244 .00054 . 00027 00024 .00047

The probability of male survival to age 17 is estimated at

(1-.01515) (1-.00076) * (1-.00037) ® (1-.00040) ® (1-.00150) 2
Note that the age specific death rates or hazard rates for females are lower
than for males and indeed remain so for all age groups. The hazard rate for
males increases dramatically for the 16-20 age group and this increase is
usually attributed to fatality in motor crashes. Notice that the girls are not

at such greatly increased hazard possibly because of more careful behaviour,
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The probability of survival may be calculated for each age and the results
presented graphically as
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Such graphs or curves are called survival curves and are a convenient way of
summarising a very basic quantity, namely survival. The curves indicate that
the probability of surviving to age 21 is estimated as 0.9708 for boys and

0.9806 for girls. Thus the average boy would have lost 3% of contempories by
age 21 and the average girl 2%

Hazard Function

So far only annual survival rates have been discussed but in medical
studies of survival of cancer patients on a particular treatment regime or
coronary patients following an infarct, it is necessary to consider survival not
from year to year but rather from one very short time interval to the next.
Suppose a person has survived until time t and we wish to consider his sur-
vival experience in the next very short time interval denoted by

{t,t+at). If
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h(t)at = Pr(death in (t,t+at) given survival until time t]
then, for at small, h(t) 4is the instantaneous death rate or hazard rate at tims
t. Approximately we may think of h(t) as the probability of dying in the next

unit of time given survival up to the beginning of that unit of time.

This hazard function h{(t) may be linked to another important function
called the survivor function defined as

S{t) = Pr(surviving to at least time t)

-

If 57 (t) is its derivative and At is small then, from the definition of the
derivative of a function,

S(t) = S{t+at) = =57 (t)at

is the probability of dying in (t,t+At). The conditional probability of dying

in (t,t+at) given survival to t is the above probability divided by S(t) s=o
that

hit)at = =S’ (t)at/S(t) giving h(t) = -5’ (t)/S(t)

Integrating from 0 to t and using S(0) = 1 gives

t
J h{u) du = =1n §(t)
o

t
and S(t) = exp - I h(u) du
o

which is an expression linking the hazard and survivor functions.

Modelling the Hazard Function

While the bottom line 4s survival, the hazard function or instantaneous

death rate is usually more informative about variations in hazard occurring at
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different times. Statistical models are usually written in terms of the hazard

function although such models clearly imply a survivor function model.

In medical studies interest centres not only on how the hazard function
varies over time but also on how it relates to levels of risk factors and to
treatment regimes. The hazard function for cancer patients may depend on age,
sex of the patient, stage of development of the cancer, white blood cell count
as well as the treatment imposed. Analysis of such data was made much easier by
the introduction of the proportional hazards model by a British statistician
D.R. Cox in the Journal of the Royal Statistical Society (series B) as late as
1972. The model is

hazard function = h{t) = i (t) x g(risk, treatment variables)

indicating that there is a basic hazard shape over time denoted by i (t) and this
hazard shape is elevated or lowered by a multiplicative factor g which depends
on the risk and treatment variables. The model appears to fit well in many
studies, If

t
Sott} = exp -I A {u) du
c

is the survivor function associated with hazard function & (t)

then
t
S{t) = exp —[ A (u)g(risk, treatment variables) du
c

= Iso{tl]g(risk. treatment variables)

is the survivor function for the proportional hazards model.

Cox used this model to study the survival experience of leukemia patients
and how survival related to treatment by a new drug. Patients were divided
randomly into two groups with one group being given no treatment {acting as
control group) and the other group being given the new drug. The times of

remission in weeks for each leukemia patient are given in the following table.
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Group 1 (drug 6-MP) 6* 6 6 6 7 g 10+* 10 11+ 13
16 17+ 19« 20% 22 23 25* 32=* 2= 3qx

35%
Group 2 (control) 1 I 2 2 3 4 4 S 5 8
8 8 8 11 11 12 12 15 17 22
23

* indicates patient alive at the end of this period.
The proportional hazards model chosen to fit this data was
hazard function = h(t) = A(t) x exp (Bx)

where x=0 for a member of the control group and x=1 for a member of the
treatment group. Note that the function g(.) is chosen as exp {(fx). The
problem is to decide firstly whether or not the drug is effective and secondly,
if it is, to estimate the extent of its beneficial effects.

The main thrust of Cox’'s work was to give a method of estimating § and,
most importantly here, testing to see if B might be zero. If B is zero then
the treatment has no effect and there is no point in giving patients useless
drugs. It is usual, therefore, to demand that new drugs be shown to be effec-
tive in a clinical trial such as described above and this involves the use of an
appropriate statistical test procedure. The development of Cox’s test and
estimation procedures is beyond the scope of this article and indeed requires
much more extensive study of theoretical aspects of statistical inference. It
suffices to say that Cox's method has been used in hundreds of studies during
the past fifteen years and is now basic to the clinical trial literature.
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