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SPACE, GEOMETRY, CURVATURE
David Tacon

If one wishes to appear wise in the eyes of one’s friends (and at times
this may not be disadvantageous) it is generally sufficient to inform them {(in
an appropriate casual way) that space is not Euclidean, that in fact it is
"curved". Although it is a little difficult to explain what one means by this
profundity it is not particularly difficult to at least give a few clues. One
can do this to some extent by explaining how curvature is defined for curves and
surfaces and “showing"” what properties it has in this context. One can then
give some further explanation of why the concept is so important in Einstein’s
world.

Let’s begin by talking about the curvature of a plane curve. Apart from
the straight 1line the simplest curve is a circle. What should we define the
curvature of a circle to be? We agree that the bigger the radius of the circle
is the flatter the circle is, and therefore the smaller its curvature should be.
We are arguing that the circle’s curvature, x, should have an inverse relation-
ship with the radius. It thus natural to define x = 1/r where r = radius of
the circle. Notice that if we consider a straight line to be the limiting case
of a circle of arbitrarily large radius we have the result that a straight line
has zero curvature. Now suppose we wish to talk about the curvature of an

arbitrary curve «a at a point P. Let's
suppose we can approximate @ at P by a
circle. Given what we have just decided it
is reasonable to define the curvature,

wu{P], of @ at P to be 1/r where r is

the radius of the approximating circle. Of
course as P varies so does r so in fact

L is generally not a constant function.
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There remains the minor technical hitch of explaining what we mean when we say
“approximate a at P by a circle." Imagine the curve a as a road and im-
agine that we are driving along it at some constant speed v, When we go round
the curve at P the car experiences a sideways, or normal, force (witich hope-
fully is equalled by the frictional force on the tyres). The approximating
circle has the property that the car would experience exactly the same normal

force if it were travelling around that circle at the same speed.

It is decidedly more non-trivial to decide how to define the curvature of a
surface M at a point P. Without worrying about the mathematical tech-
nicalities of the definition of a surface hopefully we can recognize a surface
when we See one. Soap bubbles are *examples of surfaces par excellence,
Boundaries of solids also generally form surfaces., For example consider the
surface of a ball bearing, the surface of a coffee jar or the surface of a
doughnut. The critical idea mathematically is that a surface should look smooth
and flat at least "locally™ - after all the flat earthers are nearly right.
Anyway let us denote our favourite surface by M with P an arbitrary point on
it. (why not imagine the surface of a rugby ball with P the top of the ball -
if you have an aversion to rugby call the ball an ellipsoid.)

Any plane normal (perpendicular) to M

at P will cut M near P along a

curve o called a normal section. As we

-
L -

;‘P"‘-,‘I_____....E..._...“_‘;‘“‘N‘Nl turn such a plane still making sure it
M

contains the normal N to M at P we

R S PSS get a family of normal sections each of

which has its own curvature at P. It

is not difficult to show (this was known
by Euler circa 1780)

that at such a point P there exist two distinguished normal sections o,, ©

2t 2
which are such that
(1) they are mutually perpendicular;
(2) the curvatures k and k_ of a and o are the minimum and

1 2 1 2z

maximum values of the curvatures of all normal sections. (We allow kl and kz

to have opposite signs if the curves are bending in opposite directions as at a
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saddle point. In the particular case k1 = kz the curvature of all normal

sections are the same, as is the case, for example, on a sphere.)

The directions of 01 and o, are called the principal directions and

the curvatures kl and k2 are called the principal curvatures of the surface

at P.

If we consider the case of the football it is clear that one principal
direction is along the top of the ball with the stitching whilst the other is at
right angles. If the surface were a saddle we can see that one normal section
would be defined by the stirrups whilst the other would be at right angles in

the direction of the horses back and neck.

The surprising thing is that this phenomenon is not a property of the any
symmetry of the surface. If one considers the skin of one’s body then no matter
what point we consider on our body it is easy to spot the directions of extreme

curvature; they will always be at right angles.

Euler in fact was able to show that the curvature of any planar curve in M

through P could be described in terms of k, and k, lor o, and o).

Consequently one would be inclined to think that we really need two curvatures
functions and not be inclined to throw away any of this information.
Nevertheless we gain much if we concentrate on the Gaussian curvature function

K. It is defined to be the product of the principal curvatures, i.e. K = klkz

For a plane k1 - k2 =0 so0o K=0 whilst for a sphere of radius r we have

kl = kz = % (every normal section is a great circle of radius r) so K = Lé
r
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For a circular cylinder of radius r one normal section is a circle of radius

r (so kl - % say} whilst the other is a

straight line parallel to the axis of the
cylinder (so k2 = ). Consequently K = 0

for the cylinder.

Why then 4is Gaussian curvature go important? The above examples of the
plane and cylinder give a clue. If we have a flat piece of paper we can wrap it
into a cylinder - 1in an essential way they are the same surface. Perhaps K
doesn’t change if we deform a surface in such a way that it is neither stretched
nor torn, Indeed this is the case and the result is generally known as the

Theorema Egregium - it was a favourite of Gauss and he proved it about 1820.

Theorema Egqreqium Gaussian curvature is a bending invariant.

We immediately make the observation that there can be no (flat) map of the
globe (or part of the globe) in which relative distances are preserved.
Afterall if we could do this we would need be able to "bend" (here one
shouldn’t think too much in physical terms) part of the glebe into a plane (the

scaling is not important). But this would be in contravention of the Theorema

Egregium since the sphere has non-zero Gaussian curvature l; .
r

In 1825, in a letter to the astronomer Peter Hansen, Gauss wrote: "These
investigations deeply affect many other things; I would go so far as to say they

are involved in the metaphysics of the geometry cof space."

So here we have Gauss - to many the greatest mathematician of all time -
anticipating the success of Einstein by some 80 years. Of course Gauss didn't
have any divine knowledge of what Einstein was going to achieve. However Gauss

was different from his contemporaries in at least two ways. He was convinced

19



that the laws of geometry (as applying to the real world about us) had to be

discovered emperically. Further he realized from his own work that it was

possible to study surfaces as entities in their own right, independent of how

they may be embedded in Euclidean 3-space. To clarify this point a little,

observe that our definition of Gaussian curvature K depends on knowledge of
the normal N to the surface (to obtain the normal sections). The normal N
points out of the surface into the surrounding space. To prove the Theorema
Egregium Gauss showed that one could compute K solely by taking measurements
inside the surface (since these measurements do not change when the surface ia
bent K will not change). Moreover he clearly thought it likely that his work
could be generalized to higher dimensions. If fact his successor at Gottingen,
Bernhard Riemann did just this. Consequently much of the mathematical framework
for Einstein’s general theory had been developed by the mid nineteenth century.

If it 4is a 1little beyond us to consider a 4-dimensional manifold with
metric

dsz - dxz + dy2 + dz2 = czdt2 we can still learn much by contemplating an

orange.
On a sphere there are of course no
straight lines. On a surface the
curves that play the role of straight
lines are the curves of shortest length

joining 2 points. These 1lines are

called geodesics. On a sphere it
is “clear® that the geodesics are
segments of great circles, i.e. circles
whose centres are the centre of the

sphere. With these preliminiary obser-

vations out of the way
let’s consider a geodesic triangle which makes up one eight of the sphere. The
sum of its interior angles is not = but 3x/2. This excess in angle is

presumeably explained in terms of the curvature of the triangle. What is the

total curvature of the triangle? It’s area is % x itrz and its (Gaussian)

1
curvature is T ¢ %0 that its total curvature is % P ﬂlrz " lz = /2. At least
r r
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for the geodesic triangle T we are considering

the sum of the internal angles ¢1 + ¢2 + ¢3

= =m + total curvature of T. Indeed this
is a general theorem for geodesic triangles.
If the triangle doesn’t have geodesics for

sides the result generalizes to:

¢1 + ¢2 + ¢3 = ® + total curvature of T + total geodesic curvature

of T's sides.

We will not explain what we mean by "geodesic curvature" except to say
it’s the curvature of a curve as an inhabitant of the surface itself would

measure it.

We finish by generalizing from a simple observation. We observe that the
gl

total (Gaussian) curvature of a spherical balloon of radius r is 4x T .r2 =
L} S The key observation is that the answer does not depend on r. 1Is this a
fluke? Suppose we were to squeeze it. Would the total curvature change? 1In
fact the answer is no. Again this is a specific case of a result which is a
little difficult to state in full generality. It implies, for example, that all
inner tubes have total curvature 0 no matter who is sitting on them. In any
case such a result is saying that the total curvature of a closed surface is
invariant under very general deformations. What are the common - invariances of
nature? We certainly know that energy is conserved. Is there a connection
between these two invariances? The answer is yes. 1In the real world, in
Einstein’s world, curvature is due to mass. Our results about the conservation
of the total curvature of a balloon or of an inner tube in point of fact cor-
respond to the conservation of mass (or energy) in general relativity.

E.T. Bell’'s "Men of mathematics" provides a romantic account of these
mathematicians. For an extended account of space and geometry “Space through

the ages" by Cornelius Lanczos is a terrific read.
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