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[11}31 + [21!31 + [31I3] T [n1f3] = 500
(ii) Show that
iy g gty o, . L (m2- 1)¥/?

= % m{m-1) (4 m+l)

for all positive integers m.

Q.743, ‘H o 8 Given an angle X 0 Y and a point P within its
arms, show how to construct points A,B on the

arms such that APB is straight and the triangle

0
5 b

SOLUTIONS OF PROBLEMS Q.720 - Q.731

AAOB is of minimum area.

Q.720. When the initial digit of a whole number x is deleted, the number
decreases by a factor of 13,

Find all possible values of x.

ANSWER, Let x = =z x 10" + ¥ where =z is the initial digit of x, and

08w = 10™. We wish to find y and z such that
leﬂn+y-l3y
i.e, 12y = z x 10“.

Since 3 is a factor of the L.H.S5., but not of 10n we must have z = 3,

or &, or 9,
If 2z =3, v = 25 x lt'.ln-2 and x = 325 x 10n—2' n2z 2,
If z = §, vy = 5 1ﬂn—1 and x = g5 x IDn_l, nz 1.

IE 2% % 7 % 78 x 1™ and x:% 975 & = G 5
Hence the possible values of x are 65, 325, 975 or the numbers ob-

tained by following these with any number of zeros,
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Q.721.

ANSWER.

Q.722.

Correct solution from F. Antonuccio, 5t Gregory’s College,

Campbelltown.

When the initial digit of a whole number x is deleted, the number
decreases by a factor of 13.

Find all possible values of x.

Again let x = z x 10rl + y where z is the initial digit of x, and
0sy< 10", We wish to find k such that

z x 10" + y = ky has solutions z, y.
k. Biviig w5007

Clearly k-1 > z, since 10" > y. (*)

Since any prime factor of (k-1) other than 2 or 5 is not a factor ot

10“, it must be a factor of the digit z. Hence the only possible

b b

values of (k-1) are Zasb, 3.23.5 - 7.2%.5 , and 9.2a.5b where a and b

are non-negative integers, not both zero because of (*).

For each of these possible wvalues of k = q x 2‘ x Sh + 1 one must
choose any digit z which is a multiple of q and then obtain
k

x = Z ::I 10“ where n 2 max {a,bl}.
Correct solution from F. Antonuccio, who also showed that if

Xk € 10 z + 1, there is a solution x whose second digit is not 0.

A list of numbers le, Xor Xg Ryr =vor xn, ...} is constructed as
follows:-
Any four positive whole numbers less than 100 are chosen for Xir Xy

13 and X, For n > 4, X is the number formed from the last two

digits of the sum of the previous 4 numbers. e.g. the list starting
{21, 73, 86, 20, ... would continue ..., 0, 79, 85, 84, 48, ...}. Is

it possible that the number x, never occurs a second time in the list?

Prove your assertion.
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Answer .,
et

Q.723.

Answer,

We shall prove that Xy is certain to occur infinitely often in the

list.

There are only 10B different eight digit numbers, and therefore IDB

different possible ordered sets of four 2-digit numbers, Hence, when

10a + 4 terms of the list have been constructed, it is impossible that

all sets of 4 consecutive numbers

- xj xj+1 xj+2 xj+3...
3= 21, 2, ..., 10B + 1 are different.

Suppose that ... i P and ... x

a+1" *ass? ¥pug v £’ Xe+1’ Xes3’

++« are identical such sets (where t > a). We see that we must haveh
;51!0 xt_l since there cannot be more than one 2-digit whole number,
¥, 3such that

+ X + x + x - %
Y s 5+1 a+2 s+3

is a multiple of 100 {possibly 0).

Similarly we can now show that By, ™ X, _, and so on, until we

obtain x1 = xt_3+1.

In fact our working shows that the list cycles, that t-s is a period,

and hence that X, occurs repeatedly.

A chain has N links. Seven appropriately chosen links are cut ena-
bling the chain to be separated into pieces. If x is any whole number
not exceeding N, it is possible to find some of the pieces containing
altogether exactly x links.

Find the largest possible value of N,

There are seven single separated links (viz the ones which have been

cut) and their removal has resulted in another eight lengths of chain,

Ll’ Lz, . LE' containing respectively Dye Mor een ng links, where

we have labelled the pieces so that n,sn,< ...<n

2 8°
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0.724.

Obviously we can use the cut links to obtain any number up to 7. We

will not be able to obtain 8 links unless n, £ 8. Having chosen the

value of n we can now obtain any number of links up to ny + 7 by

1!’

using L, and the cut links. We will not be able to obtain n, + 8

1

unless n2 s n, + B. Provided this is satisfied we will then be able

1

to obtain any number of links up to ny + n, + 7 using Ll, L2 and the

cut links.
Proceeding 4in this way we see that we will be able tc obtain any

number of links up to N = n, + n, ¥ e F ng

+ 8 for i =2, 3, ... 8.

+ 7 provided

ni < n1 + n2 + +ni_1

The largest possible value of N obtainable clearly results from choos-

ing each n, as large as possible; viz n, = 8 and

n, = n, + n, *+ .os tm, , * 8 for i = 2,3, ... 8.
We calculate n, = 8 + 8 = 1§, n3 = § + 16 + 8 = 32, B 6y o
n = 2k+2, +..and N =7+ 8 + 16 + ,.. + 210 = 2047.
Comment : If a cut link can be disengaged from only one of its neigh-

bours (e.g. 4if each link is shaped like an 8), the above working is
not valid. Then one obtains

N = 1+2 4+ 4+ ... + 21 = 285,

This view of the problem was taken by F. Antonuccio.

Let P(x) denote the polynomial

[Zk I 1111 e . [21: ; 1] o gH R

2k + 1l)k-2 2. k=2 5 kl 2k + 1) 2k + 1
+ [ 5 ] 1 - x) - o e ) | [2k & l]x

(k denotes any positive integer. The notation [:) denotes the bino-

mial coefficient for which ncr is alsc sometimes used.)

Use de Moivre's theorem to show that
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ANSWER. .

P{sin a) = sin (2k + 1l)a.

Deduce that P(x) factorizes as follows:-

k_2k 2 2 =« 2 2 2x 2 2 3r
Pix) = (-1) 2 x{x - s8in 2k+1][x = sin 2k+1][x. = sin 2k+1]"

. [x2 - ain z ks ].

2k+1

Replacing x by sin «, 1 - 32 by cosza

P{3in a) = {2k+1] coazku sin a - {2k+1]c032k—2¢ ainau +

1 3
2k+1 2k-4 . 5 2k+1 2k+1
[ 5 ]ccs a sin o ..... + | 1)k[2k+1]ain [ (1)

We are asked to use de Moivre’s Theorem (cos 8 + i sin o}n =
cos né + i sin né, to prove that this expression is sin(2k+l)ea.
Take n = 2k+1 in the theorem and observe that sin(2k+l)a is the imagi-

1
nary part of (cos a + i sin u)2k+ 5

By the Binomial Theorem

2k+1 2k+1 [2k+1} 2k
= cpa a + c

{cos a + L sin a) 1 o8 af(i sin a)

1 +1-
2 Jcos af{i sin a12 e + [2t+ ]coazk W

2k+1

.....

2k+1 ;
+
[2k+1](i sin a)
The rth term on the R,H.S. is real if r is even, and imaginary if r is
odd. It is clear that the terms with r odd yield i times the R.H.S.

of (1), since 13 - =3, 15 = i, 11 = -i, ... etc.

Hence P (sin a) = sin(2k+1l)a, as required.
It follows that x = sin a is a zero (or root) of P(x) if

T

sin(2k+l)a = 0. 1In particular, this is the case when ¢ = 0, =

2k+1 '
x .1 % kE Th x = 3in 0 = 0, ¢ sin =
PR+’ *f E SpF e e g 2k+l '
+ sin are (2k+l} roots of P{x), all different. Since P{x) has
degree 2k+1, these are all the roots. By the Factor theorem
x - sin =="—| fact £ P{x) f =0, £1 t k
2kal 3 a factor o {x or r , W e 2
Since - sin =£ x - sin —= = 2 a'nz = W w have
x el sin =% x i TR+l e no v
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g (x2 — sin? = [xz _ aip? 2= 2 g2 k=)
P {x) x ([ in k41 k 81 kel P a1 2k+1J

where ¥ is a numerical constant yet to be determined. Clearly K is

the coefficient of x'k+1 in P(x)
2k+1 2k+1 2k+1 _ 2k+1]
F = {‘1:|k[[ 1 ] +[ 3 ] +[ 5 ] + ... + [2};4—1)1]
k 1 [[2k+1 2k+1 2k+1 [ 2k+1 2k+1
= - — i i ™
(-1) xz [[ 0 ] + [ s ] + ... #* [2k+lJ]{alnceL ; ] [2k+1—r]>
k k
= (=1} x '%‘x (l+1)2k 1 {—~1) zzk

Correct aolution from F. Antonuccio.

Q.725. Assuming the result asserted in Q.724 show that for any positive

integer k

(1) i n ] sin 2x , An ain kn = ¥ Z2k+1
T 2k+1 - 2T 2k+1 : 2k+1 K
. n 2 n 2
i + 4+ ..+ - +1
{i1) cosec kil cosec T cosec T 3 k{k+1)
and simplify
(1i1) cot? —EF— 4 cot® —=f— 4 + cot® XE
€ 2k+1 2k+1 2k+1
P
ANSWER. (1) From the original definition of P(x) in Q.724, {x) is a polyno-
: 2k+1 2k
mial whose wvalue at x = 0 isa [ 1 ][1—0 ] - 0 = 2k+1. From
F
the facteorisation ¢f P({x) proved above, —iﬁl evaluated at = = (
is equal to
x_2k[ 2 =x 2 2n 2 k=
-1) 2 i -=si -si - ... -ai
(-1 Lo 2k+1][ sin 2k+1] [ S Skl
2k_2 " ke |2
= (- 2 in —— ... in ——|" .
=1 k[51” 2k+1 sin 2k+l]

Equating these and taking the positive sguare root yields



2k in b i 2 i ko _ {;“ﬂ*
= Tl sin e+l 3ln 2+l

1 -
(ii) Replacing x by ; and then multiplying through by yzk . in each

of the expressions for P(x) in Q.724 yields

2K+l 1 2k+1)( 2k [2k+1)( 2 Yk-1 (2k+1)( 2 k-2
S G Gl B i i B G

k 2k+1"
I N e
(-1) l2k+1J
{—1:k22k inz © in2 2n 3&c2 ] _ 2
s 2k+1 ot ® 2k+1| “° 2k+1 Y
l:2 2n 2 co 2 k=n 2
cose crel Y o sec’ 7 o7 Y |-
. .. 2k-2
Equating the coefficients of ¥ in these polynomials yields
_ | 2L k] [ 2k+1 _22k o 2 = sin2 kn
1 1 3 2k o 2k+1
a 2 X + sec2
G088 Skl |t ©9 2Kk+1
P [2k+1][k 4 2k 2:_1 } =
2 n kn
+ + ...+
{2k li[cosec kil cosec kil
(using the result of (i))
) 2 kx 3k+k (2k-1) 2
. . + ... + = =
cosec kel cosec k41 3 3 kKik+1)

. . 2 2 .
{iii) Since cosec 8 = 1 + cot 8, the result of (ii}) gives

[1+cot2 u ] oL+ [1+cot2 kn ] Z . (k+1)
2k+1 2k+1 3
whence cotz Ei:f + ...+ cot2 Ef%;'- % k{k+l) - k
= % k(2k=-1).
Correct soluticn from F. Antonuccio.
Q.726. Using (ii) and (iii) in Q.725 deduce that if s, = 15 + 55 + 12
1 2 k

m’ﬂ

2 2
{1 - Eﬁ—i—l;] <s, < %—-{1 - -——l——g
(2k+1) " {(2%+1)

and find the "limit sum" of the infinite series

k1)



ANSWER..

Q.727,

ANSHER.

1 1
2 t 2

L,
1 3

t Dha o 15 +
k

8]

Setting £(8) =8 - sin & and ¢g(8) = tan & - @ we have

£(0) = g(0) = 0, and £'(8) = 1 cos 8 > 0, g'(8) = aecza -1>40
in 0 < @8 < x/2,

Hence £(8) > 0 and g(8) > 0 in 0 < @ < =/2.
Thus sin 8 < 0 < tan 8 in 0 < & < /2.
and cot 8 < % < cosec 8 in 0 < 8 < x/2,

Now the results of Q.725 yield

k 2 k

k
kf2k-1) _ 2 _rn (2k+1) 1 2 x _ 2 "
3 I cot Shan = z 2 5 I cosec PP ak{k 1).
r=1 r=]1 x - r=1
2
Multiplying throuch by 2
{2k+1)
uz 4k2-2k xz 4k2+4k
8 o Z oo, oy ST
4k +4k+1 4k +k+1
2 y 2
i—[l-——sk+‘2]<sk4:—-[1— . 3
(2k+1) (2Zk+1)
+
Since bk+l (< 12 ) becomes negligibly small as k — =, we obtain
2 2k+1
(k+1)
:2 12 nz
=— s lim 8§ s — and the limit sum has the value —— .
6 e k 6 6

Ceorrect solution from F. Antonuccio.
When a certain polynomial, P(x), is divicded by (x -3) the remainder is
5. When P(x) is divided by (x + 1) the remainder is -3. Find the

remainder when P(x) is divided by x2 - 2x - 3.
From the first statement, P{x) = (x-3)Q(x) + 5 where Q(x) is the
guotient when P(x) 1s divided by x - 3. Let Qix) = (x+1)Ri{x) + r.
By the remainder thecrem

=3 = p(-1) = (-1-3)Q(-1) + 5

= = 4r + 5.
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Q.728.

ANSWER.

Hence r = 2 and P(x) = (x-3) [(x+1)R(x)+2] + 5
= {x3—2x-3)R(x} + (2x-1).

Thus the remainder when P(x) is divided by x2 - 2x =3 is 2x ~ 1.

Correct solution from F. Antonuccio.

Find all solutions of the simultaneous equations

x1 + xa - xxz; xz + x4 - xx3;

x3 + xs = xxd; xq + xl = xxs; x5 + xz = xxl.

We are to find all values of the unknowns x, x X, ..., X_ for which

b s 5

all five equations hold.
Adding all equations yields

bl L

- + ...+
1 + xsl x{x1 x_)

5

Hence for all solutions, either x = 2, or x, + x, + Xy + x, + xg = 1]

From the first equation we can express

33 = xxz - 11 {1)

Substituting this into the second , Xy = xxa - X, gives

2
X, = {x -1}x2 - oxx, . (2)
Substituting (1) and (2) into the next equation yvields
3 2
Ks = (x u2x)x2 - (x —llxl (3)
; 4 2 3
Similarly x, = {x -3x +1lx2 - {x —Zx}xl (4)
and X o= {x5-4x3+3x}x - {x4-3x2+1]x = {5)
2 2 1
Case 1 x =2,

Each of (4) and (5) simplifies to X, =X, Then we obtain

X, = X - X =

3 1 . xs from (1),

(2) and (3).

i- - - = - - - -

e X = x, Xy =X, =X, =a (arbitrary), x = 2
gives one family of solutions.
Case 2 x, = x, = 0.
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0.729.

ANSWER.

We then have xa = x4 = X = Q0 from (1), (2) and (3), where x has

any value. This gives another obwvious family of solutions.

Case 3 If x, and x, are not both zero, (4) and (5) yleld

1

xl:x2 = {xq-3x2+1}:t33~2x+1] = (x5—4x3+3x-1l:tx4-3x2+1:

o {x4—3x2+1}2 = {33-2x+11135~4x3+3x-1}.
; ; 5 3
This simplifies to x = 5x +5x-2=20
and then to {x—2}{x4+2x3—xz-2x+ll

= {x-ZItx2+x~1}2 = 0.

. ' -1V 5
. If x = 2, we must have xz +x-1=20, x= 5 -
Let p denote either of these two numbers. Using (1), (2) and (3} we

now obtain the remaining solutions:
x =B, %y = Bxy - %, X, = PBxy =By

= - +
x5 xz 5xl

where x, and x, may be chosen arbitrarily.

A set of cups is arranged 1in a rectangular array of m rows and n

columns, and a random number of beans is placed in each cup (no cup

being left empty). The following operations are permitted.
(1} One bean 1is taken from every cup in a row. (This is not pos-

sible obviocusly if some cup in the row is already empty).
(2) The number of beans in every cup in any column is doubled. Ia
it always possible to perform these operations repeatedly in such

way that all cups are eventually emptied?

It is possible. Wwe shall use R, to denote the ith row of cups, and
Cj to denote the jth column. op (1,i) means the operation (1) per-
formed on R, and Op{2,3) means the operation (2} performed on Cj.

We shall first show that it is possible to empty every cup in Rm.

If all cups in Rm_ contain the same number of beans, this can ob-

viously be accomplished by Oop(l,m) only. Otherwise:-
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Q.730.

ANSWER.

A

A Perform Op (2,3) for each J (if any) such that the cup in Rm
and Cj contains just one bean.
B Perform Op(l,m).

The sequence A, B will decrease by 1 the number of beans in any cup in

Rm which contains more than one bean. If the sequence is repeated

sufficiently often, we will eventually have 1 bean in each cup in Rm.

Then Op (1,m) empties all of them.

Note that no other cup in the array has fewer beans than it had

originally, so no other Cups are now empty. The whole process can be

repeated for Rh-l' then R _» until every row has been emptied. {Note

that once a row has been emptied, the cups in it remain empty after

all further applications of Op(1l,i) or Oop(2,§)).
P

(ot

4,"\ —2==2\B In the figure, A B C D is a square, and P is a

f ﬂu point on the arc AB of the circumcircle. The
f RF distances of P from A, B, C and D are denoted by a,
f‘ 51 : b, ¢ and d respectively. Show that
/ i\ V2 + 1} (a +b) =d+ ¢

and that a - b = (V2 + 1) (d - ¢).
I //)t

In this and the next problem, we shall make repeated use of the fol-

lowing theorem:-
If PQORS is a cyclic quadrilateral then Pﬁ.RS + PS.QR = PR.QS.
(One method of proof constructs a point X on QS such that
Qﬁx - RPS.
Then it is not difficult to prove that
ARPS-AQFPX

and also that A SPX-~-ARPOQ

From these we obtain respectively

PQ.SR = RP.QX P X
PS.QR = RP.SX. 8
Rddition of these establishes the desired result.)

and

Apply the theorem to the quadrilateral ADCP, cbtaining

a.s + c.a = d(J2s) (1)
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where s 1s the side length of the square ABCD and V2s is the length of
each diagonal, Similarly, from quadrilateral PDCB
b.s + d.s= c(¥2s) (2)
Add (1) and (2), and cancel the factor s
(a+b) + (c+d) = V2 {c+d)
Transposing the term (c+d) to the R.H.S. and multiplying through by
(V2 + 1) gives the first result to be proved.
Now from quadrilateral PACB we have
a.s + b.¥2s = c.s (3)
From equation ({3) subtract (Vv2+41) times equation (2)
a.s + b¥2s - (Y2+1)b.s - (V2+1)d.s = c.s - v2(V2+1)c.s.
Cancel the factor s, and simplify
a -b - (V241)d = - (V2+1)c.

The second result to be proved follows immediately.

Correct solution from F. Antonuccio.

Q.731. Generalize the first result in Q. 730:
Let P lie on the arc hlhn of the circumcircle of a
regular polygon Alhz ase ln. Let Xyo oen x
denote the distances of P to nl, S an
respectively.
=
cos—
Show that xz + x3 + ... + xnii = & {x1+xn]
1—cos;

ANSWER. Applying the theorem used in the previous answer to the quadrilateral

P

Phk~1hkhk-1 gives

P
Xy _q-3 + X418 = X 23 cos = xﬁ_*

6-%
4-! kol

=
and 2s cos = is the distance Ak—l lk+1 :

; = a A NP
Wete Ah-itirs ™ 0 ™ Maaliaa A Ak

Cancel s and add the results for k = 2, 3, ... k-1. After some

where s is the side length of the polygon

obvious simplifying this yields:
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®
{x1+xn1 - [x2+xn-1’ = {x2+x3+...+xnhll(2 cos o = 2) (1)

Now apply the theorem to the quadrilaterals Phlazan and Palhn-lhn‘
obtaining
x_ .(2 £ ) % .a=mx
1t cos = s 0 53
®
and x, .8 + xn{2 cos n.a} X 19
Cancel s, and add to obtain
"
(x1+xn312 cos =+ 1) = X, + x4 (2)
Substitution of this expression for X, + % -1 into the L.H.5. of (1)
gives
-2 cos & (X +x ) = {x +x_ + ... + x {2 cos L. 2)
n 1 'n 273 ) n-1 n

Cancel -2 and divide through by 1 - cos i‘to obtain the result stated.

Correct solution from F. Antonuccio.
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