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SOLUTIONS OF PROBLEMS Q. 732 - Q. 743

Q. 732,

Q. 733,

Let L be a set of n line segments with the property that any
three of them can be assembled to form a triangle. A pair of line
segments is called "exceptional"™ if one is more than twice as long
as the other.

What is the maximum possible number of exceptional pairs in L?

Let s, be a line segment in L of minimum length, a. We shall

prove that there cannot be any exceptional pair (s } where

24 g

neither s, nor s_ is s

2 3 1 Suppose on the contrary that b,c are the

lengths of S, 3, respectively and that ¢ > 2b. Then since

a +bs 2b < ¢, there can be no triangle with sides 31,32,53,
contradicting the data,
It follows that the only possible exceptional pairs in S are

{31,521. [51,331...., {al,snl, a maximum of (n-1) exceptional

pairs. This maximum can certainly be achieved; for example, take

8, ©of length 1 unit, and s s all of equal length ¢ units,

2'-.-,

where c > 2.

Let three lengths ab,c, and a point P be given. It is
desired to construct an equilateral triangle ABC with P as an
interior point such that the line segments PA, PB, PC are

respectively a,b and c.

(i) Find conditions on a,b,c, for the construction to be

possible,

(ii) Show how the construction can be performed with straight

edge and compass.
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ANSWER .

We may assume without loss of generality that a £ b s c.

Let ABC be a triangle satisfying

the requirements. Rotate it through
600 about A (see Fig.l) into the
position AB'C’ (where C' coincides
with B); and let P’ be the image of

P under the rotation, 350 that the

lengths of P'A, P'B’ and P'C’ are a,
b,c respectively.

Since P;P' = 60° and *FA = *P'A = a, APAP' is equilateral;
therefore PP’ = a. Hence APBP' has sides of lengths a,b and c,
and further, P’PB = APB - APP’ < 180° - 60° = 120°.

Hence our first answer for (i) is that a necessary condition on
a,b,c for the construction to succeed is that there should exist a

X : 2 3 o]
triangle with sides a,b,c whose largest angle is less than 120 .

{ii) We can construct the whole figure as follows,

Choose any point P’ such that *P’P = a. On one side of
P'P construct an eguilateral triangle PAP’'. On the other
side construct a triangle PBP’ with ilPB = b and *P'B - .
AB is now one side of the desired equilateral triangle. The
third vertex C may now be constructed,.

It 1is easy to prove that in this triangle ABC the lengths
PA, PB, and PC are a,b,c respectively. The first two are
immediate from the construction. For the third note that
ABAP' is congruent to ACAP since *Ba = .Ch, *AP' - ‘AP
and B;P' = CRP.

* a
Hence CPF = BP' = c (by construction).

(i) The condition given earlier is now seen to be sufficient as
well as necessary. Applying the cosine rule in ABPP’

Aol o a2

o
2ab > cos 120 =

BPP’ < 120° =

Nllb-'

2 2 2 ey q
= a + ab + b > ¢ . This is the required answer

to (i) (with the assumption

a= b=z cy).
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0.734.

ANSWER.

2
Comment: If a2 + ab + b2 = ¢ the point P lies on the side AB
of AABC.
2 2 2 -
If a + ab + b" < ¢ but a + b > g, a similar construction

yields an equilateral triangle with P an exterior point the
correct distances from A,Band C. If a+b < ¢ no triangle
PBP’ can be constructed, and no equilateral AABC exists with p

either inside or outside having the given lengths Ppa, PB, PC.

(i) Let S be a set of rational numbers with the property that
the product of every two distinet elements of 5 is an
integer. Show that the product of every k distinct
elements of § is an integer for all k > 2.

(ii) Show that (i) becomes false if the word "rational® is
omitted.

(i) First we show that the product of any three of them is an

integer. This depends on the following result,

Lemma: If x is a rational number such that xz = n (n a whole
number) then x is an integer.

Procf: Suppose x = % in lowest terms.

i.e. h and k(>0) are integers without a common factor.

If k >1 then k has some prime factor p.

Since p is a factor of k but not of h, then p is a
factor of nkz, but not of hz. This is a contradiction

since nk2 and h2 are the same integer. We are forced to
conclude that we must have k = 1, and the lemma is proved,

Now let x = abc where a,b,c e S.

~Then x 1is rational and x2 = (ab) (ca) (bc), being the
product of 3 integers, is an integer.

Hence x is an integer, by the lemma.
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0.735.

ANSWER.

Finally if k > 3, the k distinct elements of § can be grouped
in pairs if k is even, or if k is odd the first 3 ecan be
bracketed and the others bracketed in pairs. 1In either case the
product is an integer,

(ii) For a counter example, define § by

S$=1{m2:n=1,21,.. )

Products of even numbers of elements of S are integral,

but a product containing an odd number of factors is NV 2

for some integer N, which is certainly not an integer since

v2 is irrational.

Prove that the equation

1988 1987 1986
x x x

-2 + 3 = ... % 1987x° - 1088 x + 1989 = 0

has no real root.

Denote the LHS of the given equation by F(x) and let

G(x) = {x+1)2 F(x). After a little calculation using the formula

for summing a G.P. one obtains

1989
G(x) -{x+ll[x['__——"l“x :|t++1 ]+1989]-0
= x*9%0 | 1990x + 1089,
1989
Since G’ (x) = 1990x + 1990 which vanishes only for x = -1,

we see that G(x) has a single stationary point, in faet a
minimum since G(x) is large and positive for x numerically
large. The minimum value is G(-1) = 0, so that G(x) > 0 for all
X s -1,

Hence F(x) > 0 for all x « -1. It can be immediately verified

that F(-1) 2 0. Hence F(x) vanishes for no real value of x.

One circle divides the Plane into 2 regions; two distinct circles
give three or 4 regions, depending on their relative position,
Three circles can yield 8§ regions, but not more.

Find a formula for the maximum number
of regions obtainable from n

circles, and prove your result.
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ANSWER,

Let R be the maximum number of regions obtainable when n
n

circles are drawn. We shall show that R 1 = Rn + 2n.
s

Proof: Consider any diagram with n circles already drawn,
containing, say, R regions. Now draw in an (n + 1l)th circle,
If its circumference intersects the boundaries of the regions iﬁ
k points, these k points divide it into k arecs. Let us draw
these arcs one at a time. Each one cuts across a previously
existing region creating one more region. Hence altogether an
additional k regions result. Since these k intersections
result from the in + 1)th circle meeting the n circles
previously drawn, and circles cut in at most 2 points we see that
k is at most 2n. (k < 2n if the (n + 1)th circle does not
intersect a previously drawn circle, or is tangent to it, or if it
passes through a point of intersection of two previously drawn
circles).

Thus the number of regions after the (n + 1)th cixcle is drawn
is at most R + 2n.

It follows that Rn+l < Rn + 2n, Since we can always draw circles

which intersect each other (e.g. draw (n + 1) circles all of the
same radius all enclosing a given point p) and concurrences of
three circles can be avoided by slightly moving one of the
offending circles, the inequality may be replaced by equality.

i.e, R = R + 2n as asserted.
n+l n

Using this we have

R = 2(n-1) + R = 2{n-1) + 2{n-2) + R AP
n n n

-1 -2
After (n-1) iterations we obtain

Rn = 2{n-1) + 2(n-2) + 2(n=-3) + ... + 2.1 + Rl

= 2{1+2+ ... + {(n-1)}) + 2
- 2-"—{-";_‘-'3-1 $ B RS,
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ANSWER , Put z = X - 2
—_— -_— -
Yz + g4 - Wz 4 Y4z + 1 - Wz = 2+ Vz 4+ 1 - 24z

- V2 - 2) 3 (9. B e Za g

where the Sign in each Case must pe chosen te give the Positive

1
If 05 2 ¢ ; the signs fust be chosen Lo give

{Z-f-z-}+(1—2f;;--2+{1--.’;1

Therefore 2Vz = 0 giving , - 0, x = 2.

If % £ 25 1 the signs must be chosen to give

2 = 4z) 4 (a0 < 4 =24 (1 = 45y
Therefore 2Vz = 2, giving z = 1, x = 3,
If 1< ; ¢ 1 we aimilarly obtain
(2 -vz) (22 =4y wp g Vz - 1)
This isg true for al) Z in this range, so aj) values of , in
3 s x5 g are solutions.
If z > 4 W& obtaip

Nz -2, e s i 2+ (Vz - 1,

Therefore 2Vz = 4 giving ; - 4, and x = 6,
Hence the given €quation jig Satisfied if X =2 or if 4 is any

number jn 3 S X5 6,
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Q. 738.

ANSWER.

Q. 739.

ABCDFE is a tetrahedron having opposite sides of equal length
{i.e. AB = (D, AC = BD, AD = BC ). Prove that the faces

of the tetrahedron are acute angled triangles.

This depends on the theorem that if
6 three non-coplanar lines are

concurrent at A, the sum of any two

5 D of the angles BAC, BAD and DAC must
exceed the third.

3- % Now suppose ABCD is a tetrahedron

c

with the given property, and let
%,¥,z be the lengths of AB, AC, AD

respectively and hence also of CD, DB and BC respectively. Then
every face of the tetrahedron has one aside of length x, one of

length vy, and one of length 2z, so all four faces are congruent
triangles. The three angles BRC, CAD and DRB are therefore
equal to Et[)};(‘;t CQD and DEB respectively. Since these are the
angles of ABCD their sum is 180°. Hence if any one of them is

o
2 90 it would not be less than the sum of the other two,
contradicting the stated theorem. Thus all the faces are acute

angled.

A random number generator churns out the sequence

x Xpooeons xn,... where each xi is one of 1, 2, 3,..., 9% all

lf
with equal probability. Let Y. be the product Xy Xp ene X .

Find the probability that ¥ is divisible by 10.

We give the following as an example of the notation to be

employed: ~ P(n;5,2) is the probability that Y, is divisible by

5, but not divisible by Z. Then P(n;:5) = [%}n since ¥ is

not divisible by & if and only if every one of the n  digits

8

< xz....xn is not a 5, the probability in each case being re
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Q. 740.

ANSWER.

Q. 741.

Similarly P{n:i) = {éJn {every Hi € {1,3,5,7,9}).

9
= o= 4ln 2
and PB(n;2,5) = [5} (since every xi e {1,3,7,9)
Therefore P(n;5,2) = |2]7 - [4]n
9 9
= 5ln 4|n
and Pi(n;2,5) [9] [g]

B

Therefore P(n;10) = P(n:5,2) + P(n;2,5) + P(n:5,3)
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A deck contains n cards, of which 3 are kings. This deck is
shuffled thoroughly (i.e. until all possible arrangements are
equally likely) and then the cards are turned up one by one from
the top until the second king appears. If this procedure is

repeated many times prove that the average number of cards turned

up is likely to be close to iﬂ-é—ll .

For every arrangement in which the middle king appears in the kth
place, there is another arrangement, that obtained by reversing
the order of all the cards in the pack, in which it is in the
(n+l-k)th place. Thus all the arrangements can be grouped in
pairs for which the average number of cards turned up is always
R

> 5

Since all arrangements of the cards are equally likely, one would

zl[k + (n+i=kij

expect that after a sufficiently large number of trials the
average of the observed results will be close to the theoretical

average.

Ve W, X, ¥, T are real numbers such that
V+twtH+y+z = 11

and v2 + "2 + x2 + yz + z2 = 25

Find the largest possible value of z.
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BNSWER.

The simplest result concerning the sums of first and second powers

of real variables is the following:-

LEMMA :

Proof:

If x +y = a (>0)

2
2 2
the smallest possible value of x + y is %— , obtained
a
only when x =y = E ¥
a a
If x = 5 + & then y = 5 = 5
2 2
and xz + YZ = [%— + aé + 62) + [%— - ab + & ]
2
= %— + 252 which, since 62 z2 0
a2
for any real &, is greater than E_ except when x =y =
a
5"
COROLLARY 1 If xl + x, ¥ e ok %, = a (>0) the smallest

Proof:

possible value of

xz + x2 Fiigey # xz 1s 2
n

obtained only when x,6 = x_  =,..= x = ﬁ

x X
+
and x, by xr._j.:...-.-__i_

Suppose xi:xj. Replacing X, 3 i > aj

leaves the sum of the numbers unchanged, but reduces the
2 .2 2 2

sum of the squares, since x; + “j < x, + xj by the

LEMMA .
Hence the smallest possible wvalue of the sum of the

squares is obtained when all of =x x are equal,

1;;.;;
2

CORQLLARY 2 If b < ﬁ-' then there is no solution in real

numbers xl, xz,....,xn of

+ X i g + = a,

{J‘Cl 2 }(n a
2

xf + xz A +x = b.

This follows immediately from Corollary 1.
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Q. T742.

V+wt oty =11 - z

2 2 2 2 2

It follows that !
vV +w +x +y =25 - ¢

has no solution unless

2
25 - 22 2 % {11-z)

i.e. 5:2 - 22z + 21 5 0.
(5z - 7){z - 3) 5 0.

This is true for % £ zs 3

Thus the smallest possible value of z is 1.4 and the largest

possible value is 3.

(If z = 3, the only solution is v = w = x = y = 2),

If x is a real number, denote by (x] the integral
(that is, the largest integer not greater than

positive integer n

(i) such that

/ / /3

[11 3] + [21 3] + l31 1+ ... + [nljsl = 500

(ii) show that

/ /2 2 1/2

R & M e Y G e =

- % m{m=1) (4 m+l)

for all positive integers m.

part

x).

of =x

Find a

(i) Note that if k3 £ x < tk+113 for any whole number k then

[x1f3] = k. Hence there are [{k+1)3 - ka] whole numbers x
for which [xlfal = k, viz,

k3. k3+1, e [[k+1}3-1]

In particular there are

123"13} whole numbers x for which [xliS] = ]

(3 -231 ........................ [x1f3] = 2
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(ii)

Thus [11!3] + [21f3] ina {1241f3] {note 124 = 53 = 1)

=1 xtza-lai + 2 x(33-23] +3 xtd3-33} + 4 H{53-43}

= 4 x 53 = 13 = 23 = 33 = 43

= 400

There are 63~ 53 = 91 whole numbers x such that [xlfal - B

but to build the sum up from 400 to 500 we need only the
first twenty of these;-

HEEYM & B eienn i +1144%3

Hence the required value of n is 144,

Similarly there are tk+1}2 = kz whole numbers x such

that [xlle is equal to k, namely x € lkz,k2+1, i

tk+1}2—1:.
Therefore the given sum is

§ = 11[22—12] + 2#{32-22] + 3x(12—32}+....+(m-1}[m2-{m-1}2]

which simplifies to

2

§ = (m-1) m" - [12+22+32

+-*..+(m-l]2]

Now use the identity 12*22+-.,.+n2 . n+1$ 2n+l

(which may be proved by mathematical induction, or
alternatively by summing the identity k2 L %I{k+1}3-k3-1-3k1

for all values of k from 1 to n and simplifying).

We obtain § = (m-1)m° - !m—l:mé{Zm-ll

- 13:%l5 t6m - (2m-1)]

= m (m-1} (4dm+1) /6
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Q.743.

Therefore area ACOD = area AADB + area
In Fig.3, area APAC > area APBD

Therefore area ACOD = area AROB + area

Given an angle X E Y and a point P
within its arms, show how to
construct points A,B on the arms such
that APB is straight and the triangle

AACB is of minimum area.

Construct PM parallel to OY meeting
OX at M, Construct A on OX such that
OM = MA. Produce AP to cut OY at B.

Mote that *AP = *PB.

To prove that AARDB is of minimum
area, consider any other possible
lines through P such as CD in Fig.2
or in Fig.3. Let the line through A
parallel to (6).4 cut this line
{produced if necessary) at Q. Then
the triangles APAQ and APBD are
congruent,

In Fig.2 area APAC < area APBD.

APBD - area APAC > area AAOQB.

APAC - area APBD > area AROB.

Correct solutions to oroblems have been received from

A. Linfoot (Bathurst HS) Q.741.

K.Y. Cheung (St. Stanislaus Coll., Bathurst) Q.724, 725, 726, 727 & 730,
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