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SOLUTIONS OF PROBLEMS 744 - 752
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Q.744 Define f(x) = e
r—k

k=114
Describe the graph of f(zr) and observe that if ¢ is any positive number,

the set {z : f(z) > ¢} is the union of 71 intervals,
Let L(c) denote the sum of the lengths of these intervals.

1988 1788
Show t —) =1 —) = .
ow that L( 336) 788, and L( 338 1988
ANSWER: The function g¢i(z) = k v (keN)
r —

has a graph asymptotic to the line

z = k. It is negative when z < k,

positive when = > k, and is de-

creasing in both regions since

9'(z) = ;,:—:}1, and it approaches

!
[
L
[}

Zero as r — £0o0.
The function f(x) obtained by summing such functions obtained by tak-
ing k = 114,115,---, 184, must then be negative for all z < 114, and
positive for all z > 184. For values of z just exceeding some integer I

in the range, the large positive value of

= will dominate the other
terms in the sum. A technical way to say this is :E-i-r.r:'l+ f(z) = 400 for
K =114,115,-.-,184.

Similarly ,i_i.ﬁ_f('r} = —oo for each of these values of K . The sum of
decreasing functions is decreasing, and the sum of a finite set of functions

tending to 0 at oo also tends to 0 at oo . Hence the graph of f(x)

is as follows:-

L.
P

=an
*a

b

P m\r -
wd

e R G e -%}._.
.ﬂl
b



On the figure is sketched also the line y = ¢ for some ¢ > 0. This
line clearly intercepts the graph in one point in each interval k¥ <z < k+1;
kelld,.--,183} and also at one point in 184 < z. If we label the z coor-
dinates of those points Zy4,Z115,---, T1s4 We see that f(z) > ¢ in each

of the 71 intervals k < r < z4, and nowhere else.

184 184 184
L= Y (ze—k)= ) zu- )k (1)
k=114 k=114 k=114
184 k

Now {zy:k=114,---,184} are the roots of
A : k;HlI—k

If one multiplies through by (z —114)(z — 115)...(z — 184) one obtains a

= C.

polynomial equation.
184 184 184

c[[-%- >k [He-9]=0

k=114 k=114 =114
[

[ca:" - (c i‘; k) z:,'::‘_] - [ § kz™ ...

k=114 k=114

=10

184
cx —(c+ 1)( Z k) "% 4 terms of lower degree ... =0
k=114
184
c+1
t ts, 1 k
Y. zk, the sum of the 71 roots, is = Z

k=114

and from (1)

L(::):(c':l -1) f k

k=114

=l Zk=l71x114+184
¢ 2

~ 1988
336

= 71 1 = 1988
o x T1 % 149 98

L(lQSB) E x 71 x 149 = 1788
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Q.745

ANSWER:

Q.748

ANSWER:

A function f(n) is defined for positive integers n in such a way that
f(1)=1,f(2) =2, andif 3™ < n < 3™ for a non- negative integer m
then f(3n + k) =k3™ + f(n) for k=0,1, or 2.

For how many values of n between 1788 and 1988 is f(n) = n?

I find that I did not correctly set the question I intended. (The intended
question is reset in the new collection of problems). Owing to my error the
question as it appears is not particularly interesting since it soon becomes
clear that for n > 3, f(n) < n, and hence there are no values of n between
1788 and 1988 for which f(n) = n. To prove this, express n in “ternary”
notation; i.e. using 3 as the base of the number system.

If n=a3+a13"""+---+a;3+a; (whereeach a;e{0,1,2}, and a, #0.)

then we can calculate
f(n)=f(3x(a3" ' +--- 4+ a;) +ap)
=ao3'"' + fla3" '+ + ay)
and after repeating this sufficiently often we obtain
f(n)=a3" ' +a;3" 4. ta + flae)

=ao3'" ' + ;3" + .- 4 a1 + ar
which is clearly less than n , except when n=1 or 2.

For any positive integer n let g(n) denote the number of coefficients in
the expansion of (1+ z + 2? + 2%)" which are odd numbers.
Show that ¢(1788) = ¢(1988).

Let p(z) = Sayz* and ¢(z) = Y biz* be polynomials with integer
coefficients. We write p(z) = ¢(z) if ax and by have the same parity

(both even or both odd) for all & € N. For example

5+3r 4422 +7° 422 =142 4+ 2 (1)
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Note that p(z) = ¢(z) if all coefficients of p(z) — ¢(z) are even integers,
ie. if p(z) —¢qg(z)=0.

If all odd coefficients of p(x) are replaced by 1 and all even coefficients
by 0, we denote the resulting polynomial by p(z) and call it the standard
form of p(z). The RHS of (1) is the standard form of the LHS. Obviously
p(z) = p(z) always. Note that the number of odd coefficients of p(z) is
equal to p(1); in particular, if (14 z+ 22+ 2%)" = fu(x) then g(n)=
fa(1). Observe that,

if g(z)#0 p(x)g(z)=0 ifand onlyif p(z) =0 (2)
[Proof:- If p(z) = 0,p(z) = 2 x r(z) where r(z) has integer coefficients,
and p(z)g(z) = 2 x r(z)g(z). In the other direction suppose p(z) # 0,

and let the terms of highest degree with odd coefficients in p(z) and ¢(z)
be a,z’ and bz’ respectively. Then the coefficient of z°*' in p(z)g(z)
is ( a,bi+ even numbers), an odd number, so p{(z)g(z) # 0.]
One consequence of (2) is the following:- If h(z) = k(z) and r(z) = t(z)
then h(z)r(z) = k(z)t(x).
Proof : —~Let k(x) = h(x)+p(z)and t(z) = r(z)+¢(z).Then p(z) = 0 = ¢(z),
and k(2)t(z) = (h(z) + p(2))(r(z) + ¢(2))

= h(z)r(2) + h(z)a(z) + pa)r(z) + p(z)a(z) = h(z)r(z)
since 0 = h(z)q(z) = p(z)r(z) = p(z)q(z)).

It follows immediately that

p(z)" = p(z)" (3)

m 2
From the identity (Z y;) = ( il yf) +# 2,-#;— Yiyj

i=1
one now sees that p2(z) = (p(z))? = p(z?),
and, by induction on m that (p)2"(z) = p(z?"). (4)
Let p(xr),¢(x) Dboth be in standard form, and let the degree of plx)he s.

Then if s <t one sees that

pla)glr') = plrig(e") (5)
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since on multiplying out the RHS, no term has a coefficient other than 0

or 1.
Observe that if p(z) #0 and p(z)¢(z) = p(z)r(z) then g¢(x) = r(x),
and hence §(z) = #(z) (6)

This follows from (2) since p(z)g(z) = p(z)r(z) if and only if

p(z)(q(2) - r(z)) =0

One may check that (1+z+22+2%) (1 +2)(1+z* +2%+.-- + = )]
=(1+z2)1+24 - 4271 =142 (7)
‘Armed with this machinery we may now prove that g(z), the number of
odd coefficients in the expansion of (1 + z + z? 4 23)" has the following
properties:

A g(1)=14

B. g(2™)=g(t) m=0,1,2,

C. g(2™t+1) = 44(t) m=23,--;t odd

. g(2™t - 1) =2""2g(1), m=2,3---;1 odd.

Proof:A is immediate.

B. Letting fa(z) = (14 z+ 22 + z3)" we have already noted that g(n) =
fa(1)
By (4) fami(z) = fi(2?"), whence

g(2™t) = famo(1) = fo(177) = fo(1) = ¢(t).

Cl+a+2? 4+ " M = (142422 +2%)" (142 422 +2%)
S famepi(2) = fam(z) (142 + 22 + 29)

= f(z¥" )1 + 2+ 2? + 2%) by (4) and (5)
Sg(2mt 4 1) = F(127 W14+ 1414 1) = 4g(4) .

D.{14x+x2+ J_r:;)z"-! =] 4 ;]2'"“ + _E}?"‘{l-—ll“ " __‘.2]2"‘:
={tz¥ W1y Iz)z'"'_;._'“ 4 ) (8)
41 [

}l-{-—,r-

= (14027 )1+ 2%
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Q.747

ANSWER.

Cofame(x) = (1 4+ 227)(1 + 22" )5 by the same working as in (5).

2o g(t) = fame(1) = 2 x ¢(1) where ¢(z) = (1 + z2™+ )+ (9)
From (8), using (7),

(I+z+2?2+2%)"" =(l+z+2?2+2)[(Q+z) 1424+ 2"~ ¢(z),
(l+z4z24+23)" "t = (T+z)(1+z*+---+ Izm“‘)]'ﬁ'{x)

by (6). Hence :

famesa(z) = [(14 )1 +2% + - + 22"~ 4)]g(2)by (5).

Therefore g(2™t — 1) = 2 x 2™~ 2¢(1) = 2™~2¢(t) from (9).

Finally, using the properties A,B;,C,D we now calculate:-
9(1988) = g(4 x 497) = ¢(497) = g(4 x 124 + 1) = 4 x ¢(124) = 4 x ¢(31) =
4xg(2°1-1)=4x2%(1) =4x8x4=128
g(1788) = g(4 x 447) = g(447) = ¢(64 x 7 — 1) = 16¢(7)
16g(8x1-1)=16x2x g(1) = 128 .

The triangle AABC has side lengths AB = 25, AC = -,
BC =1

The internal and external bisectors of BAC cut BC at

points E,F respectively, and D is the foot of the perpendicular from A
to BC . The line passing through the incentres of triangles AADE and
AADF cuts AE at K and AF at L.

Show that the area of AAKL = 200.

In the figure, I and J are the in- A
!
centres of AADE and AFDA re- /
spectively. It is easy to prove that T ,J J -
AE and AF | the internal and ex- £l
. ¥\ s
ternal bisectors of BAC |, are at E D F

rightangles. Since DI and DJ are
bisectors of the right angles ADE and FDA . all four acute angles shown
at D are 45° angles, and IDJ = 90° . Since AEDA is similar to
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Q.748

ANSWER:

AADF (being equiangular) a clockwise rotation of AEDA about D
through 90° followed by a magnification by the factor *AD/*ED will
make it coincide exactly with AADF | and its incentre I will be mapped
onto J ,theincentre of AADF . It follows that *DJ/DI* =* AD/*ED ,
and this makes AIDJ similar to AEDA in view of the rightangles at
D . If AIDJ is rotated anticlockwise about D through 45°, DI and
DJ will align with DL and DA respectively, and IJ must be taken
into a direction parallel to AE . Hence KL must be inclined at an angle
of 45° to AE . We can now see that AAKL is rightangled isosceles, so
*AK =*AL .
The triangles AAIK and AAID have equal angles at

A (AI bisects EAD) and AKT = ADI = 45° . With the common side
AI , the two triangles are congruent, so *AK = *AD.

Thus area AAKL = %'AI(.‘AL = %{‘AD)’.

We can calculate the height

A

*AD from the given side lengths of
AABC . Thus *AD =
2x areaAABC/*BC. Area AABC

is given by 8

V's(s —a)(s — b)(s — c), where a,b,c & = Pos3

are the side lengths and s = (a 4+ b + ¢)/2 . Calculation gives 35 x 20/3
for this area, and then we calculate *AD = 20 . Finally area AAKL =
3(+*AD)? = 1 % 202 = 1 x 20% = 200.

a? + p?
ab+ 2

Let a,b be positive integers such that ¢ = is also an integer.

Prove that 2g is a perfect square.

$ . 52 2
a+b_b+1___2_+_§__

ab+2  b+2 b+2
which is an integer only if b = 3. Then ¢ = B = 2 x 1% Heneefortl

If a=1,

we assume that « > 2, and without loss of generality, that « < b. Since
2a?

a? + 2

< 2. there is no solution with a = welet b = \a -+ where
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A is an integer greater than 1, and 0 < r < a. (i.e., Aa is the smallest
multiple of a which is not less than b ). A little experimenting suggests

that ab+ 2 is quite close to A so we put
a? + b?

=A+ R i 1
ab 1 2 + Remainder

q=

a’? — dar +r2 - 2)

Aa? —ar + 2
show that —1 < Remainder < 1.

where Remainder = after some calculation. We shall
[Proof that —1 < Remainder < 1. Since Aa’ —ar 42 > 0, -1 <
Remainder & —(MAa? —ar +2) <.a? — Aar +r2 — 2)

< 0<Xa(a—r)—2)+(a®—ar)+(r2 + 2). This is clear since
the R.H.S. is the sum of 3 positive terms. (Remember a>2,a—r >1).
Remainder <1 & o~ dar+r? -2\ < Aa2 —ar + 2

®0<(A-1)a® +ar—r?) 4 (22 +2) + (A - 2)r2.

which is again clear, since ) > 2]
It follows that ¢ and A both being integers which differ by less than 1

must be equal, and that Remainder =0 .

S =dar+ri—2i =9

02+I"2
ar 4+ 2

a.ndq:;\:

2
If r =0 this gives ¢ = 2 = 2k* where k = -g- and if r =1 we

have already shown that the only solution is g=2x1%a=3. Otherwise,
a:‘.‘e 4 b2
I

letting r = a’;a = V' our new expression for ¢ is ¢ = ———— with

a'y +2
2<d <.
a"? + b”?
We can then repeat the process obtaining eventually ¢ = P with
a

a" < a' . Eventually we must come down to a similar expression for ¢ with
@ =0 or 1, and we have seen that for such expressions g is the double of

a square,
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Q.749

(i)

ANSWER.:

(i)

(i) APQR is equilateral and
a,B,y

are any three angles such that o +
B+~ = 60°. Points B and C -

are constructed as in Figure 1 mak-

ing
BRP = CQP = 60° + o, BPR = -
60° +, and CPQ=60°+F . Fig i

Show that PBsinff = PCsiny, and
that PB and PC are bisectors of RBC and QCB respectively.

Let A'B'C' be any triangle with angles 3a,38,3y . Let lines which trisect
the angles intersect in pairs at points X,Y,Z as in Figure 2. Prove that
AXY Z is equilateral.

In ABPR, PBR=180°— (60 + a) — (60 +7) = 60 — a — v = §. By the
sine rule PBsinf = PRsin(60 + a) = 5sin(60 + a) where s is the side
length of the equilateral triangle APQR . Similarly in APQC,PCQ = ¥
and PC'siny = PBsing,--- (1)

Now BPC = 360° — (60° + 1) — 60° — (60° + 8) = 180° — (v+5)
so that in APBC,PBC+PCB=0+¢=p8+~ (2)

By the sine rule PBsin@ = PC sin d.
sinf  sinj3

Hence, using (1), — =
' sl ¢ SNy

(3)
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(i)

Q.750

From (2) and (3) it follows that 8 =8 and ¢ = ¥ .

[Suppose 6 > § , then ¢ < v from (2), sin® > sing and sing < sin
(since all angles are acute). But this would imply Fry unl contradict-
ing (3)). A
Thus PB bisects RBC and PC bisects BCQ

In Figure 1, if we extend the figure
by constructing lines RA and QA
making QRA =60°+8 and ROA =
60° + v , we find immediately that

RAQ = a, and arguing as in (i) we
prove that RA, RB,QA,QC are bi-
sectors of angles QﬁH,PI}A, RAC, and PCA respectively.
(See Figure 2). Thus AABC is equiangular with the AA'B'C’. If its size
is adjusted by the appropriate factor, it can be brought into co-incidence
with AA'B'C’' | and the trisectors of the angles will then coincide in the
two triangles, so that AXY Z will be in coincidence with the equilateral
APQR . Hence the result.

C
A page is ruled with equally spaced e
parallel lines. Points A, B lie on the P \
fourth line from the top of the page.
R is a point on the next line up such R 2 &
that RBA = f(< 30°), and C is A (# e

the point on the top line such that

CBA = 38. @ is the point on the second top line (lying on the same side of

BC as A and R ) such that QC makes an angle (60° — ) with the

ruled lines, The biscctors of QCB and RBC intersect at P (see Figure
Prove that APQR is equilateral.
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ANSWER:

Q.751

Recognising that this result is very
like that in Q.749, but with a = 0,
it is natural to try a similar indirect
approach. Let P'Q'R' be an equi-
lateral triangle and construct B',C'
having B'R'P' = 60°, B'P'R' =
120° - 8,C'Q'P' = 60°,C'P'Q' = 60°+ B. Asin Q.749 (i) we can now show
that R'B'P' = f = P'B'C' and Q'C'P' = P'C'B' =60° -3 .

If we now construct R'B'A’ =8 and Q'C'T' = 60° — B it is clear that
C'T’ is parallel to B'A’ since the angles at B’ and C' total 180°.
Construct lines through Q' and R' parallel to A'B' and T'C'. We

would like to show that these 4 parallel lines are equally spaced. Let s be
the side length of AP'Q'R' . Since it is easy to see that Q'R’ makes an
angle of 60°+ 8 with the parallel through Q' , the perpendicular distance,
d, between the parallels through Q' and R’ is ssin(60° + 3).

From AQ'P'C', Q'C’sin(60° — B) = ssin(60° + 8) so that the perpendicu-
lar distance between the top two parallels is also equal to Q'C'sin Q'CT =
38in(60° + B) = d . Similarly, from the sine rule applied to AR'B'P’, the
spacing of the lower pair of parallels, R'B'sinf, isequalto ssin(120°—-3) ,
which is again equal to d since sin(120° — ) = sin(60° + ). Thus the
four parallel lines in Figure 2 are indeed equally spaced. If the size of Figure
2 is appropriately adjusted it can be made to coincide precisely with Figure
1. Thus APQR must be equilateral.

When B. Rainy, the school genius, knocked his calculator off the desk during
the maths exam, he discovered that only the algebraic operations 4+, %, —, +
were still operational. The only exam question still to be answered required
a calculation involving log,11. Our hero recollected seeing in a ealeulus text

the theorem
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5.z
After a little caiculatmg he found whole numbers A, B,C' such that

1 1 1 1 1 1 1
log 11 = A | — — 3
A (23 3233+5235)+B(65+3653) (435+34353
to eight decimal places. He evaluated this on his calculator and completed

1 1
log. v =2 + -—-1 + - whenever = > 1.
-1 3.7:3

the examination, obtaining his usual 100%.

Can you find A, B,C and calculate log, 117
ANSWER:

2 TE SN -
23 3 %233 ' 5 x9235 65 3:-:653

1

HC(E 34353 )
A 2841 | B 65+1 &
.é-l log - -'2-

8531 T 3 \le8gT

=

485 + 1
485 — 1
= -2—(2log2+log3—logll) + E{—5log2+log3+log11}

- 9— ~log2+5log3 — 2log11)
2 g g

5 C A 1 5
2= (A— EB E) log2 + ('— + =0 - EC’) log 3

2 2
+ (—§+-?-+C)logll
= log 11
'A-gmé%ﬂ
if <§+—§ §C=.U
= N

-These solve to give 4 =48 B =22,C = 14.
[The error made in using only the first few terms of the series is in each case
approximately equal to the first omitted term, since the terms get small very

rapidly. The combined error is of the order of magnitude of

A4

1 1
3 s 55 i, e i
T 237 5x65 T “Fxass < 3 ]




Q.752

ANSWER:

Performing the calculation gives the result
logl] = 2.39789527

In order to locate all the carriers of a disease it has been decided to perform
blood tests on everyone in a large community. It is known that the probability
that a randomly selected individual has the disease is 1%. Each blood test
costs $100 to perform, but the test is very sensitive and a diseased sample
can be detected even if diluted by a factor of several thousand. Instead of
Just testing each sample separately, it would obviously be cheaper to mix
small portions of each of a batch of samples together and test the mixture.
For example, if batches of 4 samples were mixed, most of the batches would
yield a negative result. Any batch which tested positive would necessitate
further tests on the remaining portions of the 4 samples to determine the
carrier or carriers in that batch. That testing strategy turns out to reduce
the average cost per person to about $28.

Is it possible to find a testing strategy which reduces the cost of testing the

community to less than $10 per person on average?

Let p(= 0.01) be the probability that a randomly selected sample returns
a positive result, and ¢ = 1 — p . We consider a testing procedure which
starts by mixing small portions of each of a batch of n samples and testing
the mixture. Let ZI,. be the average number of tests required to locate all
the carriers in the batch.

The number of tests is obviously 1 if no-one is a carrier; the probability that
this is the case is ¢". If the initial test is positive several more tests will
be needed. We let Y,, denote the average number of tests (including the
initial one) to locate all carriers in a batch of size n which shows positive

on the initial test. Then for every n
Zy=q"1 4+ (1 -¢"Y, (1)

[Proof: Let some large number N of batches of size n be tested. Abont

Ng" of the batches have no carrier and require just 1 test. The remaining
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Case 1

Case 2

Case 3

Case 4

N(1-4¢") batches require on average Y, tests to locate all the ..tlzarriers,
The total number of tests for all N batches is Ng™ + N(1-¢™)Y,.. Now
divide through by N to get thé average number -of tests per batch, Z,. )
Now let n = 2m. Our testing procedure mixes small fractions of all 2m
samples for the first test, A , further small fractions of each of the first
m samples into a mixture lB and slnall fractions of each of the other m
samples into a mixture C :

We consider four cases:-

B and C both “clear” This occurs with probability ¢?™ and only the
test on A is needed to test the whole batch. '

L]

B is clear, but C is not. This occurs with probability g™(l — qg™).
After the test on A shows positive, B is tested and shows clear. Then
C must be positive. The average number of tests to find all carriers in
C is then Y, — 1 (since we do not need the initial test on the mixXture
C ).. in this case, the total number of tests on the batch of size 2m is
I{on A)+ 1(on B) + (Y — 1) =Y + 1

B is positive, but C is clear. This case occurs with proba.biiity |
(1—¢™)¢™ . Aftertestson A and B , there are needed a further (Yin—1)
tests to locate all carriers in B , and finally one test on C (which reveals

that it is clear). This is a total of Y,, + 2 tests in this case.

B and C both positive. This case occurs with probability (1 — ¢™)2.
In addition to the initial test on A , there will be required on average Y,,
tests on both B and C to locate all the positive samples; i.e. a total of
2Ym + 1 tests in this case.

From these results it follows that
Zam = "M 149" (1= ¢" WY +1) 4+ (1= g™ ) g™ (Vi +2) +(1 - ¢" (2 +1)

{This follows from an analysis similar to that in brackets justifying (1) above).

31



After simplification
Zam = 2¥m(1 ~¢™) + 14 ¢™ — g*™
From (1), 2Y,,(1 - ¢™) = 22Z,, - 2¢™

SR z‘zm = 22m +1- qm = qim (2)

Now the average cost per sample is given by -z;'-(timt?s $100)
From (2)

Zg,,._Zm 1 m Im
2m m +2m(1hq =2 (3)

Thus the average cost per sample is less for batch size 2m than for batch size
m provided 1—¢™ —¢?™ < 0. (When ¢ =0.99 thisisso provided m <
48). There is another consideration however. Our testing procedure requires
the batch to be divided into halves repeatedly (for “positive” batches), and
this can be done exactly only if n is a power of 2.

Using (3), with Z; = 1 and ¢ = 0.99 one can calculate Z;u_ for n =
2,4,8,16... etc. obtaining 0.5149, 0.2798, 0.1694, 0.1210, 0.1030, 0.0990,
0.1006, ... respectively.

For n = 64, %ﬁ* = 0.0990 and the average cost per sample is (.0990 x
$100 = $9.90.



