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SPECIAL RELATIVITY
BY WILLIAM TAYLOR

The popularity of the special theory of relativity stems from extraordinary predictions
about time, distance, mass, Encrgy and the nature of space. What follows attempts to
connect the concepts of time dilation with the equivalence of mass and energy and the
concept of four dimensions. Relativity isn’t a “fact”, it is a sct of ideas which can be
used to interpret the results of experiments and observations and to make predictions in a
consistant way. So far it has done so with great accuracy.

NOTE: Throughout this essay it is assumed that NO ACCELERATION is going ou,
Consideration of relativistic effects due to acceleration (or vice versa) are the realm of
General relativity and Mach's Principle (which has nothing to do with the speed of sound).
There are two principles
1. The spced of light, in empty space, is the same “c” independent of the state of motion
of the observer (and the motion of the source).
2. A principle best stated in several forms
- Electrodynamic and mechanical effects do not have properties that require the con-

cept of an absolute state of rest.

- The speed of an object cannot be determined IN ANY WAY without external ref-

erence,

- No object is absolutely stationary (This is well known to the highway patrol)

- The concept of absolute (non-accelerating) motion is invalid.



PART 1 Time and distance measurement
The apparatus T will use is a light source, coupled with a detector, both orientated to
use a mirror “d” units away. There is also a stop watch attached to the apparatus that

measures the time “t” taken for light to go from the source to the receiver.

Source | \/IN/  Receiver

Suppose this device moves past you at velocity “v” and orientated at “A” degrees to

the direction of motion.
The following event is timed:
A ray leaves the source, is reflected by the mirror and is detected at the receiver.
The diagram shows the object at three stages in the event
1. When the light is emitted from the source.

2. When it is reflected at the mirror.
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The heavy line indicates the path taken by the successful light rays collected at the



" recelver,
Let t; = the time to reach the mirror from the source
t, = the time to reach the receiver from the mirror
t = t; + t; the time for the whole transaction.
¢ = the speed of the photons (light particles)
The distance travelled to the mirror is ¢ty and from the mirror to the receiver is ct,.

The respective horizontal motions of the device are vt, and vt,. Using the cosine rule:
ct? = v*t? 4 d* 4 2vt,.d. cos(A)
(NOTE : cos(180 — A) = — cos(A))

22 = v*2 + d® — 2uty.d. cos(A)

and rearranging the equation involving t; we have a quadratic equation which is solved to

find f'l
_ 2vd. cos(A) + /4d*v? cos?(A) + 4d?(c? — v?)
e 2(c? — v2)
vd. cos(A) + d\/c"' — p? sinz(A}
v @
Similarily
~vd. cos(A) + dy/e? — v?sin®(A)
fg -

(@ =)

Since the times taken are inherently positive we will use the positive instance for both t;

and ?;, noting that

t=1t, +1t



the total time for the event is

2dy/c? — v?sin?(A)
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This result indicates that the time taken for the event depends on both its speed and
orientation.

Michelson and Morley proposed to detect the motion of the Earth through space by
using a rotating configuration of two identical, perpendicular light paths with mirrors at
the ends to reflect light from a common source to a receiver at which the interference of
the rays could be observed. The time difference for the paths could be derived from the
observations of changing interference patterns. No change in the interference patterns was
detected. Hence if “4” is measured for my apparatus at various orientations there should
be no variation either. Let us assume that this is the case.

Poincare suggested that not only the Michelson Morley experiment, but any exper-
iment would be unable to determine the absolute velocity or direction of motion of an
object, this is principle 2.

The second principle indicates that the time “¢”, recorded on the watch attached to the
apparatus, for the event should be the same independent of the velocity of the apparatus,
relative to a “stationary” observer, when the event was recorded. Note this does not mean
that the value of “t”, measured by a stationary observer with a stationary watch, is the
same for any value of “v”. In fact, the theory of relativity holds that this is not the case.

If we suppose that the value of “t”, recorded on the watch attached to the apparatus,
does not alter with the orientation or velocity of the device then there is an apparent

contradiction with the algebra. Suppose that we let “d” change with the orientation and



velocity of the apparatus so as to allow “#” to be constant. This may scem like a fairly
desperate attempt to “fix” the algebra but there are common sense precedents for the
idea. For example think of a string of marbles separated by springs, turn it into the
flow of a current and the string will shorten. Matter is made up of atoms held by forces
and perhaps it may be affected by some cosmic flow coming from a particular direction.
Since all measuring sticks would be similarily affected you could not directly measure this
alteration of length.

If “d” is to vary then so should “#” so that the speed of light remains constant as
supposed in principle 1. What then of our measurements of “¢” being constant? Recall
that “t” is measured by a watch moving with the apparatus, if the passage of time is
altered for the event then so will it be for the watch in such a way that no discrepancy
will be detected. The value of “¢” may however be different for an observer moving with
respect to the apparatus, I will only suppose that the value of “+” depends on the relative
velocity of the apparatus but not on its orientation.

To indicate that ¢t depends on v we use t(v) and to indicate that d depends on v and
A we use d(v, A)

So an hypothesis to reconcile the algebra with the experimental results is to rewrite

the equation for ¢ as

2d(v, A)y/c? — v2sin®( A)
t(v) = (\c/,_v,..} (1)

or changing the subject
t(v)(c? - v?)

24/c? — v?sin?(4)

d(v,A) =

NOTE: Henceforth assume that the general concepts of time ¢ and distance d depending.



on v or A are true for any events and not just the elements of my apparatus (as Poincare
did).
Consider events with the same velocity v and orientations of A = 90degrees and 4 = 0

degrees in (1).

d(v.90)/c?2 — v2 2d(v.0).
t(v) = g {v{fzﬂ}_ ::2) = and t(v) = (CQ{L—‘L%

equating the two expressions and rearranging

1,1" 2 _ a2
d(u,gu).% = d(v,0),

Let
T

c

L(v) =

This factor will appear often, it is called the “Lorentz contraction factor”. Note that

L(v) <1 when v < ¢ and
d(v,90).L(v) = d(v, 0) (3)

which means that an observer should see the apparatus shortened in the direction of motion

compared to its vertical dimension. Since L(0) = 1,
d(0,90) = d(0,0) (4)

which means that orientation has no effect on the distance measurement when the appa-
ratus i1s “stationary” with respect to the observer.

We suppose that d(v, 90) is constant for all values of v since the object being measured
has a velocity of 0 at 90 degrees to the direction of motion, and is therefore “stationary”

in this aspect. This means

d(v,90) = d(0,90) (5)



and also d(v,90) = d(0,0) using (4).

Considered with (3)

d(0,0).L(v) = d(v,0) (6)

For v < ¢ the distance measure of an object in the direction of motion is less as measured by
a “stationary” observer than the measure made by an observer travelling with the object,

or as measured afterwards when the object is “stationary” relative to an observer.

Using (2)
d(v,90) = % and d(0,90) = *(01"'2
o, 90) = LT g g0, 00) = O
Since the left hand sides are equal (using (5)
t(0) = L(v)i(v) 1)

For v < ¢ the time taken for an event occuring in a moving apparatus is greater as
measured by a “stationary” observer than the measure made by an observer travelling
with the apparatus, or as measured afterwards when the apparatus is “stationary” relative
to an observer. This “time dilation effect” is supported by observations that some short
lived particles which result from cosmic collisions in the upper atmosphere live much longer
than can be accounted for without supposing that their time rate is slower than ours. It
is rather intriguing to realise that our time rate also looks slower to them.

Einstein proposed “The twins paradox” to popularise this effect, but lets use triplets.
Two of the triple go on identical journeys in fast spacecraft in opposite directions, eventu-

ally returning to the homebound member, cach observes the other pair’s time to be going



slower than their own by virtue of their high relative velocities. Upon returning home the
two travellers are equally aged but the homebound one is older. The pair who journeyed,
experienced identical accelerations and would have noticed that the account of ages was
finalised while decelerating to home. Why is acceleration so kind to those who partake of

it?

PART 2 Relative Velocities

Suppose there are two observers, one “stationary”, named 0, the other moving at v
in the “z” direction relative to 0,, named 0,. By previous arrangement, when 0, and 0,
are at the same position, a light pulse leaves a point Z. 0, and 0, each receive the pulse
after times of #(0) and #(v) respectively, both at an approach speed of ¢ in accordance to
principle 1. 0, and 0, calculate the co-ordinates of Z relative to themselves at these times
at (z(0),y(0)) and (x(v),y(v)) respectively.

Hence z(0) = ct(0) and z(v)= ct(v)

or t(0) = 2(0)/c and t(v) = z(v)/c (8)
In this time 0, sees 0, move a distance v#(0) and 0, is now z(v) units from Z which is

seen by 0, as x(v).L(v) by (6)

I=y=>
|
i I » Z
| !
I I
las seen by Q ------=---- wlY)m——m— - I
I b=vs=y
1
as seen by QI———-.rt(D}ﬁ--“-*-l -------- w(wIl(y)=---—=~ I



Hence

x(0) — vt(0)

L(v) (9)

z(0) = vt{0) + a(v).L(v) or z(v) =

The observers now have formulae for calculating the position of Z from the each other’s
perspective,
Also since there is no motion in the y direction y(0) = y(v)

Substituting (8) into (9)

ct(0) — vz(0)/c
L(v)

t(0) — va(0)/c?
L(v)

ct{v) =

which becomes t(v) =

Next consider that the point Z is moving with velocity U,(0) and U,(v) in the z direction

and Uy(0) and Uy(v) in the y direction, relative to 0, and 0, respectively

dz(0) dz(v) .
that ?{(-(-]H)- = U, (0) and (o) U.(v)

How are the velocities of Z related? In Newtonian Physics Up(v) = U,(0)—v but now

things are different.

_dz(v) _ da(v) di(0)
Vsl = dt(v) — dt(0) dt(v)
U0y = ) _ dv(v) d(0)

U di(v) T di(0) di(v)

(10)

from (9)
dr(v) Uy 0)—v
dt(0) = L(v)
di(v) 1—oU(0)/c? . di(0)
a0) - I(v) the inverse of m

dt(v) _ dy(0) _
dt(0)  dt(0)

U,(0)
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NOTE: In the y direction U (0) = dz(0)/dt(0) = 0. Also, since v is constant, L(v) is a
constant with respect to time.

Hence (10) becomes

Uz(0)=v

U:l0) = 10 opia

and Uy(v) = Uy(0).L(v) (11)

This result indicates that objects externally observed as approaching at a combined speed
in excess of ¢ will appear to each other to be approaching at less that ¢. In particular if

the approach speed U,(0) = —c then U,(v) also is ¢, i.e. principle 1.

PART 3 Mass and enerpy

There are three assumptions that are retained fromm Newtonian Physics: mass, energy
and momentum are conserved in a moving system just as they are in a “stationary” one.
Let’s consider the momentum of a ball as it moves in the “Y” direction. The momentum
can be assessed by measuring its mass beforehand then timing it as it moves between two
points to determine velocity which we will suppose is negligible compared to “c”. For a.n
observer moving past in the “X” direction (at 90 degrees to “Y™”) the “Y" component of
the momentum of the ball should appear the same as for the observer sitting still relative to
the measuring points. Assuming that both observers determine identical “Y” momentum
for the ball and considering that the moving observer sees the ball move slower due to
time dilation and yet is expected to calculate that its momentum is unaffected! (see (11)).
This is apparently another inconsistency. Suppose an object has mass m and y velocity of
Uy(v) (which is also equal to U, (0).L(v) by (11), its mnomentum in the ¥ direction is the
smne for both observers.

e, mUy(v) =mUy,(0) but Uy(v) = U,(0).L(v)

L



Hence to “fix” the contradiction, we follow the precedent for time and suppose m

depends on v, i.e., let

m(v) = m(0)/L(v) (12)

For v < ¢ the mass of an object is greater as measured by a “stationary” observer than
the measure made by an observer travelling with the object, or as measured afterwards
when the object is “stationary” relative to an observer. Note that as speed builds towards
¢, the object’s mass increases without bound, hence no object with non zero mass can be
given sufficient energy to reach the speed of light.

m(0)?  m(0)? ¢?

T ;—z-substit.uting for L(v)

Using (12) m(v)? =
which is modified to

m(v)?c? = m(0)%c? + m(v)*v?
where m(v).v is the momentum, commonly called “P”. Hence
m(v)ic? = m(0)%? (13)
Expanding 1/L(v) by Taylor series, (12) becomes
m(v) = m(0)[1 + v*/2¢* 4+ 3m(0)v?/8c* = - -- (14)

The units of both sides of (14) are those of energy and the familiar Newtonian Kinetic
energy term appears second on the right hand side of the equation. The terms involving

v" can be equated by P?/m(v) using (13). Einstein proposed that (14) was in fact an

energy equation and that the total energy of a particle is m(v)c?.
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