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WHICH INTEGERS HAVE RATIONAL SQUARE ROOTS?
Werner Ricker*

Recall that a real number is called rational if it can be expressed in the form p/q where
p and g are integers with ¢ # 0. Numbers which are not rational are called irrational. The
theme of this article is to address the problem of how to determine whether the square
root & of a positive integer is rational or not. As the definition suggests, we have to exhibit
a pair of integers p and ¢ (with g 3 0) such that & = p/q or show that no such pair p and
q exists. Which of these two possibilities is the case depends, of course, on the properties
particular to the number & under consideration.

Let us begin with our “old friend” /2 which, by definition, is the unique positive
number B satisfying §? = 2 (we will assume that such a number B actually exists). If /2
was & rational number there would exist positive integers p and g satisfying 2 = p/q. By
cancelling (if necessary) it can be assumed that p and ¢ have no common divisors (other

than 1 and -1, of course). Now p?/¢? = 2 and so
(1) p* = 24",

This shows that 2 divides p? = pp (as 2 certainly divides the right-hand- side of (1)). Now
2 has the property that if it divides the product ab of two integers a and b, then it divides
either @ or b. Accordingly, 2 must divide p and so p = 2k for some positive integer k.

Substituting this into (1) gives 4k? = 2¢? or, equivalently,
(2) g = 2k?.

This shows that 2 also divides ¢> = gq (as 2 surely divides the right-hand-side of (2))
and so, arguing as before, we can conclude that 2 must divide g itself. Hence, it has
been shown that 2 divides both p and ¢ which is contrary to the choice of p and ¢ having
no common divisor. This contradiction arises from the original assumption that /2 is
rational. Accordingly, this assumption is invalid and so V2 is irrational,

This simple argument was deliberately spelt out in detail because its method of rea-

soning can be used to establish much more. The essential point is that the number 2 has
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the property that if it divides a product ab of two integers ¢ and b, then it divides at least
one of them. There is a familiar set of positive integers having the same property, namely
the prime numbers {2,3,5,7,11,13 +++}; these are (by definition) those positive integers o
with the property that their only (positive) divisors are 1 and a. We will need the following

two properties of prime numbers,

Property 1. Every positive integer n has a unique factorization of the formn = bvBEM ... b,
where the by,--. b, are the distinct prime factors of n and the my,.-- m, are positive

integers.

For example, 1500 = 22.3' 5% and 80 we can choose b; = 2,5, = 3,83 = 5 and

my =2,m3 = 1,1713 =3.

Property 2. If {a1, -, ar} is a finite collection of positive integers and b is a prime
number dividing their product a,.ay. - ‘*@y, then b divides at Jeast one of the numbers

o, Qg v ey ey,

If you experiment with a few examples it quickly becomes evident that these properties
are at least plausible; they are established in any reasonable book on elementary number
theory (see the reference [1], for example).

Equipped with these two properties and the proof of the irrationality of /2 we can
now describe all positive integers n for which v/ is irrational. Call & positive integer n
a perfect square if there exists another positive integer m such that n = m?, For such an
integer n it is clear that v/ is a rational number; indeed, /n = m is actually an integer.

The following result shows that these are the only positive integers whose square root is

rational,

Fact. Let n be a positive integer which is not a perfect square. Then V/n is irrational.

Proof. Let b,,.- by be all the (distinct) prime numbers which divide n. By Property
1 there exist positive integers my,---,m; such that n = b"b3" - 7™ . The numbers
My, -+, my split into two groups, the even ones and the odd ones. By relabelling the
prime divisors of n (if necessary) we may assume that the odd ones are m,, -+, m, and

the even ones are TMr+1,°- -, my for some integer r between 1 and k. Note that must be



at least one by the assumption that n is not a perfect square. Write m; = 2¢; + 1, for
1<j<r,and mj=2sj,forr &1 < j £k, where the s; are positive integers and the

are non-negative integers. Then
n= (b B (B o BB b
and herﬁ:e, /7 is the product of /(b; ---b,) and the integer
PIRTSC TS

Suppose that +/n is a rational number. Then also \/n/f (which equals \/(b; - - b,))

is a rational number. Accordingly, there exist positive integers p and ¢, with no common
divisor, such that 1/(b, --- b,) = p/g. That is,

(3) p? =g*(by---b,).

Since b, divides p? (as it divides the right-hand-side of (3)) and b; is a prime number it
follows that by divides p, that is, p = kb; for some positive integer k. Substitute this into
(3) gives k?b? = ¢%(by - -+ b,) or, equivalently

(4) g*(bz+-+by) = k?by.

If r = 1, then (4) actually becomes ¢* = k?b, and so b, divides ¢? (as it divides k?b,).
If r > 2, then b, divides g*(by---b.), as it divides the right-hand-side of (4), and hence

by divides ¢* or by - b,. But, since by,--+,b, are all prime numbers distinct from by it

follows from Property 2 that b; cannot divide the product by - - - b,. Accordingly, b; must
divide ¢%. Hence, in either case (that is, r = 1 or r > 2) we can conclude that b, divides
g* = gq. But, b, is prime and thus it must divide g itself. So, b; has been shown to divide
‘both p and g which is contrary to the fact that p and ¢ have no common divisors. This
contradiction stems from the assumption that \/n is rational. Accordingly, v/n must be
irrational.g

~ We have seen that a rather simple proof of an elementary fact (in our case, the proof

of the irrationality of v/2), if properly analyzed, can be exploited to establish somewhat



more than originally anticipated. This is a useful lesson for all students of mathematics
(even university professors).

Let us now turn our attention to & number of a rather different kind, namely the
one usually denoted by the letter e. This number has several equivalent expressions. For
example, given the function f(z) = 1/z,for z > 0, and & number u 2 1, let F(u) denote
the area determined by the graph of f and the X-axis between z = 1 and £ = u. Then e
is that (unique) number u such that F(u) = 1. The difficulty here is that we need to know
what is meant by “area”. The number ¢ can also be specified as the limit of the numbers
(U178} n =13, -, a8 % tends o infinity; this time the catch is in the phase “limit
as n tends to infinity”. Both of these (equivalent) definitions of e involve concepts which
are not yet available to us in a precise form. We prefer to use still another definition of e
(equivalent, of course, to the two suggested above) which is based on one of the defining
properties (called Dedekind’s principle) of the real numbers.

Recall that a sequence of real numbers z,,n = 1,2,--., is said to be

(i) increasing if z,, < Tn41, for every n = 1,2,--+, and
(ii) bounded from ahove if there exists a number M such that z, < M, for every n =

L s
One of the fundamental properties of the real numbers states that if Toyn=1,2... is
an increasing sequence (of numbers) bounded from above, then there exists a unique real
number z satisfying |

(I) zp < z, for everyn=1,2,--- and
(I) if u is another real number satisfying ¢, < u, for every n =1,2,--., then r < u.
Let us proceed to define the number e. For each integer n > 0, let

ea=1/00+1/10 4+ 1720 ... & 1/n! = i 1/,

Jj=0
where we recall the notation n! = 1.2. (n —1).n, for n > 1, and 0! = 1. It is clear that

the so defined sequence €nyn =0,1,---, is increasing, Noting that
m!l=123...(m-1).m >122....22

1

where 2 occurs (m — 1)-times, it follows that 1/m! < 1/2m~1 ¢ every integer m > 1.



Accordingly,

(5) en S14+141/24... 4172771, n>1
Now, for any real number 0 < r < 1 and positive integer m the formula
(6) l+rtridotr™ ! =(1-r")/(1~r),

can be verified by multiplying both sides by (1 — r) and then expanding the resulting
left-hand-side. Substituting r = 1/2 (in which case 1/(1 —r) = 2) and m = n into (6)
shows that the right-hand-side of (5) equals 1 + 2(1 — 1/2") = 3 — (1/2"-1). Accordingly,
it follows from (5) that

en S8-(1/2""1<8, n=012: -

That is, the increasing sequence e,,n = 0,1,2,- .- , is bounded above by the constant 3.
Hence, there exists a unique real number, which we denote by e, satisfying

(I') en < e, forevery n=0,1,2,..., and

(I} if u is another real number satisfying e,, < u, for every n = 0,1,2, .-, then e < u.

It was just shown that u = 3 satisfies (I') and so (II') implies that e < 3.
Fact. The number e is irrational.

Proof. Suppose that e is rational, equal to p/q say, for some positive integers p and q.

For n > g it follows from the definition of e, that

dlea=g!(Y 1/ +qi( Y 1/i1)

j=0 J=g¢+1
or, equivalently, that

g n
(7) len =D 1/ =g Y 1/5Y).

+

J=0 J=g+1

Now, for any integer j > ¢ it is clear that

/' =1/(g+1)(g+2)---j < 1/2779,



from which it follows that

(8) () Yi< D YPTN =124 122 4 41 om0,

j::'-'-l j-l+l
But, the right-hand-side of (8) equals 1 — (1/2"79); this follows from (6) with r = 1/2 and
m = n - g. Combining this with (7) it follows that

g
(9) ea =D 1/i) <1/2"%,  psg
=0
For n > g, let w, denote the left-hand-side of (9). Then wy, n=g+1, g+2,... , is an

increasing sequence since
Wi — Wy = q!(E“.H - c,,) > 0.

Furthermore, none of the numbers Wa, B > g, exceeds the constant gle (just note that
wn < glen < gle). Accordingly, there is a unique positive number w satisfying
(I") wo <w, forall n> g, and

(I") if v is a real number such that wy S v, for all n > ¢, then w < v,

The claim is that w is precisely the number w* = g'(e — 3290 1/7!). Indeed, since

en < e, for every n > 1, it is clear that
g
w, = gl(e, —-El/j!)gw‘, n>gq,
j=0
Furthermore, suppose that v is a real number such that w,, < v, for all n > g. It follows
from the definition of w, that

7
(10) e,,Sq!v-}-El[j!, n>gq.
j=0

Since e; < e, for 0 <k < nit follows that (10) actually holds for all n 2 0 (not just
n > q). Accordingly, property (I') of e implies that ¢ < g'v + .%o 1/5! which, upon

J=0
rearranging, gives
¢
v < gl(e - Z 1/i1) = w®.

j=0



This shows that w® has the same properties that w has in (I") and (II”) and so, by
uniqueness of w, it can be concluded that w* = w, that is,

(11) w=gl(e— Y _1/j).

.

Jj=0

From e = p/q and (11) it is clear that w is an integer. However, from (9) and the
definition of wy, it follows that

we < 1271 < 1/2, n>gq,

and so (II") implies (with v = 1/2) that w < 1/2. Since w is clearly a positive integer
(after checking w # 0) this is a contradiction as there are no integers strictly between 0
and 1. Accordingly, e cannot be rational.n

Another number often encountered during our mathematical education is r. It turns
out that 7 is also irrational. For an elegant and not too difficult a proof of this fact (you
will need to know some calculus!) we refer the interested reader to page 181 of the reference

[2].
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