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DISCRETE VERSUS CONTINUOUS
Jim Franklin

In the beginning, mathematically speaking, there were the whole numbers. A heap of
apples can be counted, because it is naturally divided into a fixed number of single apples.
But length, time, weight and so on are not “structured disereiely”, like this. Instead
of counting, you measure. And to measure, you need to introduce a unit. Since these
quantities are continuous, or infinitely divisible, the size of the unit is arbitrary — someone
just has to decide what should be the length of, say, the standard metre; and then, however
small. the unit is, there can still be lengths less than the unit, so that the whole numbers
are not sufficient for measurement.

The ancient Greelcs,.tireless thinkers as ever, wondered if it might e possible, in any
patticular problem, to reduce geometry (of length, time, area and so on) to arithmetic
(using only whole numbers), by choosing a unit small enough so that all quantities in
the problem would be whole numbers of the unit. To take the simplest example, given
two lengths, how do you find a unit, or “common measure”, so that both lengths are
whole number multiples of it? The Greeks invented an ingenious process for this, called

“anthyphairesis™: Mark off lengths equal to the smaller length along the larger:

A B

If the smaller length goes exactly into the larger, the smaller is of course itself a common

measure. If not, take the small length left over (AB in the picture), and mark off lengths

equal to it along the smaller of the original two lengths:

C D
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If it goes exactly. it is the common measure; if not. repeat the process with the small piece
left over at the end, CD (i.e. measure off lengths of CD along AB). Keep doing this until
the last length used fits a whole number of times into the one before. The last small length
used is the common measure of the original two lengths.

This is very exciting, and extends easily to (for example) three lengths, and to areas,
Where the process can be performed, it converts any problem involving geometrical (con-
tinuous) quantities into one about whole numbers. No awkward fractions, no decimals,
nothing but pure, clean, wholegrain, “natural” numbers. Lovely.

Unfortunately, there is a small bug in the method. Certainly, if there is a unit in
terms of which both lengths can be measured, anthyphairesis will find it. But there is no
guarantee that anthyphairesis will ever end - it could be that there are pairs of lengths
whose anthyphairesis goes on forever. In fact, it was discovered that this happens for the
diagonal and the side of any square, so that the diagonal and the side are incommensurable
(i.e. have no common measure). It is not known how exactly this was discovered, but the

following diagram is one possibility:
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(Exercise (moderately difficult): Use the abéve diagram to explamn why the anthy-

phairesis of s and d never ends).

It is not known who exactly made the discovery, either. Legend has it that the
Pythagorean Brotherhood, devoted to the view that the universe is understandable in
terms of (whole) numbers, murdered the first person to reveal it. But this is a much later
story, and sounds like those modern myths (that Marilyn Monroe was murdered by the
C.LA., that. in the Middle Ages it was believed the earth was flat, and so on), which keep
going because they are picturesque, rather than because there is any reason to believe

them.

(The incommensurability of the diagonal and the side is logically equivalent to the
irrationality of V2. We often say loosely, “The Greeks discovered that /2 is irrational”,

but this involves a rather gross reinterpretation of what they really did).

The conclusion drawn was that geometry cannot be reduced to arithmetic. Most of
later Greek mathematics therefore concentrated on geometry, as t_he more general science,
and regarded arithmetic as a sub-branch. This meant, for example, that the theory of
decimals and fractions took a back seat — possibly to the detriment of the development of
mathematics as a us-cful science. It is a remarkable fact that ancient languages have no

unit of speed (like “kilometres per hour™).

There has been a certain tension between the continuous and the discrete in mathemat-
ics ever since. It is characteristic of medieval thinking that the issue is treated explicitly.
Nicole Oresme, the inventor of graphs and probably the best medieval mathematician.

presents the story of a dream in which figures representing Arithmetic and Geometry de-
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bate as to which is more noble. (The result? - Oresme uses the traditional cop-out of the
drecamer waking up at the crucial moment ).

In the seventeenth century, (continuous) rates of change came to be understood prop-
erly, leading to the development by Newton and Leibniz of the calculus, the science of
continuity. The continuous thereafter occupied the forefront of mathematical research,
with notable achievements ranging from mathematical physics to the foundations of cal-
culus. Only since about 1950 has the discrete started to regain its place in the sun.‘This
1s because computers are “digital” (they work in discrete steps: off and on, 0 and 1, fol-
low this instruction or don’t). Like many things to do with computers, even the word
“digital” has acquired a kind of gloss, and is used to suggest something is good (as in,
“Tonight’s prize is this clegantb‘z styled modular digital stereophonic unit, hand-crafted
in tooled leatherene by Acme of Australia”). Now, the discrete is everywhere. One of
the biggest changes is tertiary mathematics courses in recent times is the introduction of
“discrete mathematics” courses, containing mathematics relevant to computing, such as
logic and the theory of algorithms and of counting.
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