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History of the Derivative
Milan Pahor1

Measure what is measurable, and make measurable what is not so.
Galileo Galilei

The 17th centurywas a revolutionary period in the development of modern science.
In 1610 Galileo Galilei began a detailed study of the moons of Jupiter using the cutting
edge technology of the telescope. By 1619 Johannes Kepler (implementing the detailed
data he inherited after Tycho Brahe’s death) had published his three laws of planetary
motion, the first of which made the inflammatory assertion that the orbit of each planet
in the solar system is an ellipse with the sun at one focus.

Galileo
(1564-1642)

Scientists (as natural philosophers became known) began to
model the physical world through the emerging techniques of ex-
perimentation and mathematical analysis. Despite some spirited
opposition (in 1633 Galileo was brought before the Inquisition,
shown the various instruments of torture and invited to recant,
which he did) the end of the century saw Isaac Newton laying the
foundations of modern science with his laws of motion and gravi-
tation.

Mathematics as it stood was effective in dealing with fixed well
defined static objects. However it soon became clear that this de-
veloping scientific analysis of the physical world demanded an en-
tirely new theory of mathematics capable of dealing with evolving systems in a state
of flux. Against this backdrop, the fundamental concepts of differential calculus began
to surface across Europe. Ultimately the threads of the theory were brought together
by Sir Isaac Newton (1642-1727) in England and independently by Gottfried Wilhelm
von Leibniz (1646-1716) in Germany.

Newton
(1642-1727)

1Milan Pahor is a Lecturer in Mathematics and Statistics at the University of New South Wales.
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Leibniz
(1646-1716)

To Newton a curve was simply the path of a moving particle.
From his point of view the essential problem of calculus was the
subsequent calculation of its velocity. In other words he needed to
be able to jump from knowledge of where a particle was, to knowl-
edge of where it was heading. Newton viewed calculus as an es-
sential tool in his analysis of mechanics and gravitation.

The discovery of calculus is unfortunately mired in controversy
(on many different levels) with Leibniz also staking a claim to its
discovery. His approachwasmore abstract in that he simply sought
to establish the gradient of the tangent at any point on a curve.
Leibniz was also one of the first to view a curve as the graph of
an algebraic relation and to couch the derivative in terms of the theory of functions.

From amodern perspective both of these problems are equivalent to the calculation

of the derivative
dy

dx
, the instantaneous rate of change of a function y = f(x).

Both men spent their later years locked in a bitter dispute over ownership. Due
in some part to the enormous power he wielded as the President of the Royal Society,
Newton seems to have secured the historical credit as the father of calculus. However
there is little doubt that Leibniz’s approach and notation, which has survived to the
present day, offers a deeper insight into the fundamental workings of the derivative.

Although these terms were not in use until much later, Leibniz’s abstract, almost
philosophical, approach to the derivative was that of the Pure mathematician whereas
the pragmatic Newton could be described as an Applied mathematician or a Physicist.
It is fair to say however that neither man fully resolved the technicalities surrounding
the formal definition of the derivative. That would take another 150 years of intense
analysis. We will examine the two different techniques of Newton and Leibniz in de-
tail. But let us first take a look at a 2009 2 unit HSC question as a foil.

2009 Higher School Certificate
(2 unit Mathematics paper Question 1d)

Question: Find the gradient of the tangent to the curve y = x4 − 3x at the point
(1,−2).

The concepts which surround this problem are extremely subtle. Note firstly that
this question could be asked in a number of different ways.

Question 2: Find the gradient of y = x4 − 3x at the point (1,−2).

Question 3: Find the instantaneous rate of change of y = x4−3x at the point (1,−2).

Question 4: For y = x4 − 3x find
dy

dx
at the point (1,−2).

The following thoughts will be swirling through a student’s mind. Given a function
y = f(x) there exists another function called the derivative or the gradient function and
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denoted by
dy

dx
or f ′(x). This gradient function

dy

dx
has the property that its value f ′(1)

at x = 1 is the gradient of the original function at x = 1. I have a formal definition for
dy

dx
but don’t need to use it because I also have a bag of algorithms, facts and tricks that

I can use to find the derivative. The process of differentiation is linear so I can bust the

problem up into smaller bits. I also have the simple formula
d

dx
xn = nxn−1. So...

f ′(x) = 4x3 − 3 → f ′(1) = 4× 1− 3 = 1.

Descartes
(1596-1650)

What is especially revealing is the position of this ques-
tion on the paper, Question 1(d). Thus the examiners con-
sider this to be one of the simplest questions on the exam.
But there is 300 years of blood, sweat, tears and heartache
in the above analysis! Let’s step back 350 years and take a
look at how Rene Descartes (1596-1650) attacked such a prob-
lem in the period just before the development of the deriva-
tive.

We will be testing out all of the different approaches to differen-
tiation on the function y = 5x2.

Descartes’ Approach

Example 1: Find the gradient of the tangent to y = 5x2 at x = 1.

y

x

P(1,5)

y=5x2

A

B

The first observation that Descartes would have made is that this is a tough prob-
lem. Everything moves! As the point P slides around on the curve the tangent AB
is constantly changing, as is its gradient. Secondly the calculation of the gradient of a
curve is a crucial technique to have at ones’ disposal. The function itself controls the
fixed value of y, but the gradient is a measure of its evolution!
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Descartes wrote that the problem of constructing tangent lines is ‘the most useful
and general problem that I know or even have ever desired to know in geometry’. This
is how he did it:

y

x

P(1,5)

C( ,0)b

y=5x2

A

B

r

We construct a circle with centre (β, 0) on the x-axis and radius r chosen so that
the circle and the parabola have a common tangent AB at P . The equation of the
circle is then (x − β)2 + y2 = r2 and intersecting the circle with the parabola yields
(x − β)2 + (5x2)2 = r2 and hence (x − β)2 + 25x4 = r2. Upon expanding we have
x2 − 2βx+ β2 + 25x4 = r2 and hence

25x4 + x2 − 2βx+ (β2 − r2) = 0.

Now this equation has a double root at x = 1 so for some b and c

25x4 + x2 − 2βx+ (β2 − r2) = (x− 1)2(25x2 + bx+ c)

= (x2 − 2x+ 1)(25x2 + bx+ c)

= 25x4 + (b− 50)x3 + (c− 2b+ 25)x2

+(b− 2c)x+ c

Equating powers of x we have

b− 50 = 0 → b = 50

c− 2b+ 25 = 1 → c = 76

−2β = b− 2c = −102 → β = 51.

Now mPC =
5− 0

1− β
=

5− 0

1− 51
= −

1

10
. Since PC ⊥ AB we can use m1m2 = −1 to

obtain
mAB = 10.
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The contrast with a modern approach is alarming:

f(x) = 5x2 → f ′(x) = 10x → f ′(1) = 10.

Clearly Descartes’ method has major problems. Even in the quadratic case the alge-
bra is ponderous and the technique simply did not have the legs to be of any genuine
use to Newton. Nevertheless it does sort of work. It is easy to sit back and have a bit of
a chuckle when comparing the two methods above, however keep in mind that Rene
Descartes was one of the greatest thinkers of his age.

We now contrast the techniques of Newton and Leibniz on the simple question
of finding the gradient of a tangent to a curve y = f(x). Both approaches begin by
choosing a point P on the curve where the tangent is to be placed. A second point Q
is then positioned on the curve ‘near P ’. The heart of the difference between the two
approaches is the definition and perception of Q. The tangent AB is then analysed
by instead considering the gradient of the secant PQ as Q approaches P in a vague
undefined manner.

y

x

P(x,y)

Q

Newton   Q=Q(x+Ox,y+Oy)

Leibniz   Q=Q(x+ x,y+ y)D D

A

B

y=f(x)

Newton’s Approach

Newton’s approach is all about time and motion. He considered the curve to be
the path of a moving particle and referred to the variables x and y as fluents (they
flowed). The time rates of change ẋ and ẏ were then named fluxions. Suppose that the
particle was initially at a point P (x, y) and consider its position on the curve after a
small interval of time O had elapsed. Since distance = time× velocity the particle
will have moved to Q(x + Oẋ, y + Oẏ). Clearly Q is still on the curve and hence must
satisfy its equation y = 5x2. Thus

y +Oẏ = 5(x+Oẋ)2
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= 5(x2 + 2xOẋ+O2ẋ2)

= 5x2 + 10xOẋ+ 5O2ẋ2

c = y + 10xOẋ+ 5O2ẋ2

So Oẏ = 10xOẋ + 5O2ẋ2 and division by the small time interval O yields ẏ =
10xẋ+ 5Oẋ2. Letting O disappear (Q → P ) we have ẏ = 10xẋ which implies that

ẏ

ẋ
= 10x.

A modern closure would be that
ẏ

ẋ
=

dy

dt
dx
dt

=
dy

dt

dt

dx
=

dy

dx
.

However Newton was not interested in
dy

dx
! From his point of view the quantity

ẏ

ẋ
was by definition the gradient of the tangent. In the language of the day this was called
a solution to the tangent problem.

Leibniz’s Approach

Leibniz made no use of time at all and instead dealt directly with the function
y = 5x2. He simply moved P (x, y) through small increments ∆x and ∆y to Q(x +
∆x, y +∆y). Then

y +∆y = 5(x+∆x)2 = 5(x2 + 2x∆x+ (∆x)2) = 5x2 + 10x∆x+ 5(∆x)2

Since y = 5x2 we have ∆y = 10x∆x + 5(∆x)2 →
∆y

∆x
= 10x + 5∆x. Letting the

infinitesimal ∆x vanish (Q → P ) we have the gradient of the tangent being 10x.
There is very little difference between the two approaches. Unfortunately Newton

was an extremely secretive character. He was reluctant to publish and even when he
did make his results known, he would disguise the material through various codes.
Leibniz on the other hand wanted to tell the world. It is clear from various letters that
Newton had beaten Leibniz to the discovery of calculus by some 10 years but it was
certainly Leibniz who published first.

The Problem of Infinitesimals

Both arguments suffer from the same fatal flaw. Neither man had the slightest no-
tion as to a formal definition of a limit. Newton had his infinitesimal time interval O
popping in and out of existence. Likewise Leibniz had the infinitesimal ∆x mysteri-
ously disappearing and reappearing. These infinitesimals were non-zero when they
needed to be non-zero (for division) but suddenly became zero to close the argument.

The reality of infinitesimals became a significant philosophical problem. It seems
the case that both Newton and Leibniz viewed infinitesimals simply as a convenient
notation. However many of their colleagues, the Bernoulli brothers in particular, were

6



adamant that infinitesimals actually existed lurking somewhere between zero and the
start of the positive real numbers. This explained their capacity to exist as both zero
and non-zero quantities.

Not surprisingly, the possibility of objects springing in and out of existence aroused
the interest of the church. Bishop Berkeley (quite rightly) launched a stinging attack
on the theory:

‘and what are these fluxions? The velocities of evanescent increments. And what
are these same evanescent increments? They are neither finite quantities, nor quantities
infinitely small, nor yet nothing. May we not call them ghosts of departed quantities?’

It would be a century and a half before the derivative had a formal limit definition.
Interestingly some recent effort has gone into what is called the hyperreal number

system. These include the usual real numbers together with actual living infinitesi-
mals, that is non zero ‘numbers’ whose absolute value is smaller than that of any real
number. Remarkably it is possible to logically reformulate the derivative in terms of
these infinitesimals rather than through limits.....but it’s pretty spooky.

Notation

One issue that does seem to be agreed upon is that Leibniz’s notation is significantly
superior to that of Newton. For example:

(i) Suppose that y = f(u) where u = g(x).
The chain rule in Newton’s terminology is y′ = f ′(u)u′ while in Leibniz’s terms it is

dy

dx
=

dy

du

du

dx
.

Leibniz’s formula gives the reader a clear feeling as to why it all works! The appli-
cations of Leibniz’s notation are sometimes almost miraculous:

(ii) Suppose that y is a product of two quantities y = uv.
We make y a little larger
y+ = (u+ 1

2
∆u)(v + 1

2
∆v) = uv + 1

2
u∆v + 1

2
v∆u+ 1

4
∆u∆v

and then a little smaller
y− = (u− 1

2
∆u)(v − 1

2
∆v) = uv − 1

2
u∆v − 1

2
v∆u+ 1

4
∆u∆v

Subtracting we have
y+ − y− = ∆y = u∆v + v∆u and dividing by the infinitesimal ∆x yields

∆y

∆x
= u

∆v

∆x
+ v

∆u

∆x

The product rule!!

Both Newton and Leibniz were fully aware of the fundamental theorem of calculus
and referred to it as the inverse tangent problem. The ‘proof’ using Leibniz’s notation
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is delightfully simple.

y

x

A

DA

Dx

y

Let A be the area accumulated underneath the curve y = f(x) and consider the
extra increment of area ∆A. This is approximately a rectangle so ∆A = y∆x. Hence
∆A

∆x
= y. It follows that we need to ‘antidifferentiate’ y to find A.

Limits

The controversy and struggle over infinitesimals took almost 150 years to resolve.
In the 1800s Augustin-Louis Cauchy (1789-1857) and Karl Weierstrass (1815-1897) es-
tablished the formal definition of the limit of a function lim

x→a
f(x).

The vaguely mystical properties of infinitesimals were replaced with a brutally ex-
act definition of the limit. We say that lim

x→a
f(x) = L if and only if:

For each ǫ > 0 there exists δ > 0 such that |x− a| < δ implies that |f(x)− L| < ǫ.

Intuitively this means that f(x) can be made as close to L as you wish by simply
choosing x sufficiently close to a.
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Weierstrass
(1815-1897)

Cauchy
(1789-1857)

It is crucial when discussing limits with students not to fall into
the same traps as Newton and Leibniz. If lim

x→a
f(x) = L do not say

that the limit approaches L, or that the limit is approximately equal
to L.........the limit is L!

It is fair to say that most undergraduate students struggle to
come to grips with the ǫ− δ definition of a limit. But the definition
is completely bullet-proof.

The door was now open for our modern precise formal defini-
tion of the derivative.

dy

dx
= lim

h→0

f(x+ h)− f(x)

h

Returning to our motivating example of y = f(x) = 5x2 the story comes to a close:

dy

dx
= lim

h→0

5(x+ h)2 − 5x2

h

= lim
h→0

5(x2 + 2xh+ h2)− 5x2

h

= lim
h→0

5x2 + 10xh+ 5h2 − 5x2

h

= lim
h→0

10xh+ 5h2

h
= lim

h→0
10x+ 5h

= 10x.

The formal definition of the derivative is the culmination of 200 years of intense
mathematical development. Just as an advanced English student would never be al-
lowed to leave school without exposure to Shakespeare, a student of calculus must
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have mastered differentiation using limits.

What became of GottfriedWilhelm von Leibniz? Hewas completely crushed by the
immensely powerful Newton. Leibniz was happy to share the glory but Newton was
adamant that his work had been stolen. Leibniz became increasing marginalised and
found it difficult to secure academic positions. When he died in 1716 his funeral was
attended only by his personal secretary and his grave remained unmarked for almost
50 years.

Newton wrote ‘If I have seen further it is by standing on the shoulders of Giants’.
He also trod on a few toes.
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