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The Fibonacci Pi Series

Samuel Power!

The purpose of this paper is both to observe, understand and appreciate the link be-
tween the Fibonacci sequence and the ubiquitous mathematical constant, 7. It proves
the following series for 7, making use of the Fibonacci numbers.

Rate 4-(=1)*
= Z Z (2k + 1)(F, 2k+1 0.1)

n=1 k=0 n+1)

where F,, is the nth Fibonacci number. The derivation of this identity employs several
different mathematical concepts.

Angle Sum Formulae

We begin with the well-known trigonometric sum formulae:

sin(A+ B) = sin(A) - cos(B) + cos(A) - sin(B) (0.2)
cos(A+ B) = cos(A) - cos(B) —sin(A) - sin(B). (0.3)
By dividing these expressions, we obtain a corresponding formula for the tangent:

_ sin(A+B)  tan(A) + tan(B)
tan{A +B) = cos(A+B) 1—tan(A)- tan(B) 04

Inverse Tangent Addition Formula
To advance further, we now consider the inverse tangent function tan~'(z). Taking A
and B as tan~! z and tan~! y respectively, we see that:

tan(tan~'(z)) + tan(tan™'(y)) = z+y

tan(tan™" (z) + tan ™" (y)) = —— tantar (o) fanlea 1)) = T 5 3 (0.5)
Hence y - ety
tan™ (x) 4+ tan™ " (y) = tan (m) (0.6)

To gain another similar result, which is very relevant to our proof, we take the recipro-
cals of both A and B, which shows:

tan ! (l) + tan* (l> = tan ' <M> (0.7)
T Y z-y—1
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The Fibonacci Sequence

We first define the Fibonacci Numbers, the most common definition being;:
Fo=0F=1F,=F, +F, (0.8)

Using this definition of the Fibonacci Numbers to advance our proof, we first prove
that the following identity holds:

Fyy = F3 =14 Fop - Fongs (0.9)
We can show this through induction. Let P(n) denote the following proposition
Pn)=F}  —F}, —1—Fyy - Fopp1 =0 foralln>0 (0.10)
P(0) is clearly true. Now, let k be an integer for which P(k) is true, that is:
Fojpy — F3 = 1= Fop - Fopy = 0 (0.11)

We now consider:
Fopps = Fiiyo — 1= Faryo - Forys (0.12)

Using the Fibonacci sequences defining recursion, we can see that:

Forro = Fopy1 + Fay (0.13)

and
Fopvs = Fopqo + Fopyr = 2F 9,41 + Fyy (0.14)

The previous expression for(12) now becomes:
(2Foks1 + Fo)? = (Faerr + For)® — 1= (Faesr + For) - (2Fop41 + Fa) (0.15)
After expanding and collecting like terms, we arrive at:
Fopy — Fie = 1= Fap - Fapepn (0.16)

Note that this is the same as the expression for P(k), which is also equal to zero by the
inductive hypothesis. As P(0) is true, and P(k) implies P(k + 1), we can say that P(n)
is true for n > 0.

Inverse Tangent Addition with Fibonacci Numbers

Returning to the inverse tangent addition formula, we note that:

1 1 24+ 3 1
-1 — -1 — — -1 = -1 — .17
tan (2) + tan (3) tan (2.3_1> tan (1> (0.17)
1 1 1
tan™! (5) + tan™! (§> = tan~! (55;_81> = tan~! (§> (0.18)
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1 1 1 21 1
tan ™! (13> +tan™? (ﬁ) = tan ! (%) = tan "' <§> (0.19)

Thus we can represent tan~'(1) as a sum of several smaller arctangents, viz,

1 1 1 1
-1 o -1 (= -1 = -1 1 -
tan™ (1) = tan <2> + tan (5) + tan (13) + tan™ (21> (0.20)

Note the denominators correspond to odd-indexed Fibonacci numbers (Fi, F3, Fj, etc.)
truncated by the following even-indexed Fibonacci number. This suggests the gener-

alisation:
)+ Z (5

We can prove this conjecture by induction. Let P (m) denote the following proposition:

tan"'(1) = tan" ( ) (0.21)

2m+2 2n+1

T m
P(m) == =tan '(1) = tan" + tan™ ( > 0.22
( ) 4 ( ) ( 2m+2) ; F2n+1 ( )

for natural numbers m > 1. We begin with the P(1) case:
P(1) = tan™! € + tan ™! 1 (0.23)
= ta 7 a 2 .
1 1 243

_ -1 (1 S B
= tan (3) + tan (2) tan (2.3_1> (0.24)
= tan~!(1) = % (0.25)

Hence, P(1) is true. Now, let k£ be an integer for which P(k) is true, that is,

T
P(k) == =tan (1) = tan~ ( > tan™ < ) 0.26
(k) 4 (1) Fopyo Z Foniq ( )
Now, consider:
k41 1
P(k+1) = tan™* ( ) + tan~! < ) 0.27
( ) 2k-+4 z:: Fopiq ( )

Expanding and rearranging, this can be expressed as:

1 1
Pk+1) = tan_1< >+tan_1< )
( ) Fopto Fopis

1 1
+tan_1 ( ) — tan~! ( )
Fopya Fopto
1

) (0.28)




Using the inductive hypothesis, the first two parts of this evaluate to 5, becoming:

— 4+ tan + tan — tan 0.29
4 (F2k+3 Fopta Fopyo ( )

As we wish to show that the entirety of this expression evaluates to T, we need to show
that the remaining part of the expression evaluates to 0, that is,

1 1 1
tan™! +tan~! ( ) —tan~* < ) =0 0.30
(F 2k+3) Fopya Foryo (0.30)
This can also be stated as:
1 1 1
tan~! +tan* < ) = tan~! ( ) 0.31
<F2k;+3 ) Fopta Fopio 0.31)
By shifting the index from £ + 1 to k, this can be stated simply in terms of Fy;, and Fy g
as:
1 1 1
fan~! + tan~! (—> - (_) 0.32
(FQk—l—l) For + Foa Fyy, (0.32)
Using our previous arctangent addition formula, we condense this to:
_ For + 2F541 > 1 ( 1 )
tan ! = tan — 0.33
(FQkF2k+1 +FZ., -1 Foy, (0.33)

As both sides of the equation are expressed in terms of the inverse tangent, we take the
tangent of both sides and rearrange slightly to arrive at:

S+ 2Fo Foyy = FopFopyy + Fopyq — 1 (0.34)

Rearranging further:
Fopn — Fi =1 — FypFop1 = 0 (0.35)

As we have already proven that this expression is equal to zero, the inductive proof is
complete, and we can say that

g =tan (1) = tan~" ( ! ) + gtan_l ( ! ) (0.36)

F2m+2 F2n+1

for any natural number m/gel. In addition, since F,,, — co as m — oo, we can say that

1 1

+- — 0, and similarly, +—— — 0. Thus, taking a limit as m — oo, we can omit the
m 2m—+2

extra term, and express it as an infinite series, such that:

g:tan—m):gm—l( =) 037)

F2n+1



Power Series
Our next step is to express the inverse tangent as a power series. Many functions f(z)
can be expressed as an infinite power series

= i apx" (0.38)

n=0

where a,, are a set of coefficients determined by the behaviour of f(z). The simplest
such series arises from the geometric series.
Consider:
fx)=1+2+2*+2°+ ... (0.39)

It is well-established that f(z) = ;*-. The ratio test shows that this series converges to
the function only within the domain —1 < z < 1. This can be summarised succinctly
as:

o0

Z = — for lz| <1 (0.40)

Replacing = with —2?, we can see that:

> (=)= ) (0.41)
n=0
> (== +1 > (0.42)

The Inverse Tangent Power Series
It is well known that power series may be integrated term by term on their interval of
convergence. Applying this here, we see that:

/ i(—n%%dx - / 113;2 (0.43)
n=0

> / ) e dr = tan (z) + ¢ (0.44)
n=0
0 n p2ntl .
= tan~ 4
nz 2n 1 = tan" (z) (0.45)

(checking that ¢ = 0 by substituting x = 0).

A simple application of the ratio test shows that this power series is only valid
on the interval —1 < z < 1. It is known that this infinite series also converges to
the function f(x) = tan~'(z) on the boundary of its radius of convergence, that is, at
r=—-land z = 1.



Having arrived at an infinite series expansion for f(z) = tan™'(z), it is tempting to
simply substitute in z = 1 and multiply by 4 to approximate a value for 7 2. However,
the problem with this is the rate of convergence of the series.

Consider: o

4. (=1)"
) 0.46
z% 2n +1 ( )

Taking ten terms of this series returns a 7 value of 3.232, having no decimal places
of accuracy to the actual value of 7 (3.142...). However, when z is a much smaller
number, the approximation to the arctangent function converges much faster, as the
terms are similarly smaller. For this reason, we prefer to express 7 in terms of the
arctangent of smaller ratios, greatly accelerating the rate of convergence.

Final Proof

Let us now put together the three key facts we have established

% = tan"'(1) (0.47)

tan "' (1) = itan_1 (F ! ) (0.48)

n=1 2n+1
0 (_1)nx2n+1 .
“onr1 ¢ 49
; on + 1 an”(z) (0.49)
From (46) and (47),
O — 1
- = tan" 0.50
4 ; ( Fy, +1) (0.50)
From (48),
. = (—1)*
tan™! = 0.51
<F2n+1) g (2k 4 1) - (Fypyq)2k+1 ( )
Substituting (50) into (49), we have:
TNy (-1)*
4 0.52
172 T (e 03
Transposing the factor of 4 across to the other side of the equation, we arrive at
=L G ) (B (0.53)

This is the desired identity - the Fibonacci Pi Series.
Convergence Rates

2This method is known variously as the Leibniz, Gregory or Madhava series method.



We must consider its rate of convergence to 7 relative to alternate methods. Defining

We now construct a table of values for some different values of a and b.

Tab = E

a b

(=DF

n=1 k=0

(2k + 1) - (Fopqp )t

a | b Tab Error=|m,, — 7|
1 | 1 | 1.83333333333 ~ 10"
5 | 5 | 3.11378443244 ~ 1072
10 | 10 | 3.14136682211 ~ 10~
10 | 25 | 3.14136680525 ~ 1071
25 | 10 | 3.14159267033 ~ 1078
50 | 20 | 3.14159265359 < 1078

(0.54)

The table demonstrates that large values of a are much more efficient than large
values of b in the accurate computation of .
This is because taking higher values of b only results in more accurate computation
of the individual arctangent values, which converge more quickly than the sum as a
whole. By contrast, the value of a allows for the arctangent terms to be summed much

more rapidly.

Those seeking to calculate m using a truncated form of our infinite Fibonacci Pi
Series should use the largest possible value of a for their approximation and relatively

smaller values of b.



