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Intermediate Asymptotics
Michael A B Deakin'

When I entered my third year of university study, I was introduced to the topic of
Fluid Mechanics — the mathematical analysis of the flow of liquids and gases. Ifound
that the concept of a fluid that is analyzed in that context is not exactly that which
applies to real fluids. The “fluids” discussed in the lectures had local properties, such
as density, pressure and velocity, described by continuous functions for which it was
possible to assign values at points situated in the fluid. However, we all know that
real fluids are composed of atoms and/or molecules and so do not correspond to such
a description. This discrepancy is addressed in the opening chapter of one of the
textbooks we were set: D. E. Rutherford’s? Fluid Dynamics (Edinburgh: Oliver & Boyd,
1959). Rutherford’s careful discussion bears quoting in full.

A portion of a real fluid is composed of a very large number of molecules
each of which has its own mass and velocity. At any instant the several
molecules within a given closed surface have a great variety of velocities,
since the velocities vary both in magnitude and direction from molecule to
molecule. If the closed surface has a small but finite volume V it is pos-
sible to consider the average mass per unit volume and the average vector
velocity within the surface. These quantities might be regarded as the den-
sity p and the velocity q of the fluid at some point within V, though it must
be remembered that their values depend upon the size of the small volume
considered. In fact, if the volume be too small it may contain only one, or
two, particles or even none at all, and the quantities then evaluated could
hardly be regarded as the density and velocity of the fluid. On the other
hand, if the volume chosen be too large p and q can only be regarded as
average values and will not give a meaning to density or velocity at a point
in the fluid.

The truth of the matter is that the concepts of density and velocity at a
point in the fluid pertain only to the idealised notion of a continuous fluid
and are not strictly applicable to a real fluid. The mathematical difficulties
indicated above arise from the fact that a real fluid is a discrete assemblage
of molecules and is not a continuous fluid.
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Perhaps it needs to be said here, in the light of the disclaimers that Rutherford
advances, that the science of Fluid Mechanics nevertheless provides excellent descrip-
tions, and indeed predictions, of the behavior of real fluids. The treating of a real fluid
as a continuum is only an approximation, but nonetheless a very good approximation.

When Rutherford carefully chose the volume V to be neither too large nor too small,
he was embarking upon what another mathematician, Grigory Barenblatt, was to call
“intermediate asymptotics”. The word “asymptotics” in this context may be taken to
mean “approximations”; it relates to the word “asymptote”, with which readers will
be familiar, but extends the meaning beyond that more usual sense of the word. By
“intermediate”, Barenblatt signified that it was to be understood as applying away
from extreme situations. In the case just cited, the volume V is to be intermediate in
size between being too large or too small; these extremes are to be avoided.

Here is what Barenblatt has to say (in his book Scaling, Self-Similarity and Interme-
diate Asymptotics [Cambridge University Press, 1996]): “[Intermediate asymptotics are]
asymptotics valid for times and distances at which the influence of fine details of ini-
tial and /or boundary conditions is lost although the system is still far from an ultimate
equilibrium.”

In another of his books, Dimensional Analysis (London: Gordon & Breach, 1987), he
supplies an interesting visual example. A picture composed of 560 (28 x 20) monochro-
matic squares is displayed. If we view this from a distance neither too near nor too far,
we readily recognize it as the Mona Lisa.

In one of my own researches, I needed to use intermediate asymptotics. With a
student and a colleague, I was looking into the so-called Michaelis-Menten® reaction,
which treats the action of enzymes on biochemical substrates. I had been introduced
to this material when I studied Biochemistry back in my student days, and had had
my interest aroused by my dissatisfaction with the approach outlined in the textbooks
of the time. Indeed, my doubts were shared by others; one group of researchers said
that one of the hypotheses there entertained, if treated correctly, led to a differential
equation “no biochemist has encountered or would wish to”. Thus my interest in the
topic.

Michaelis and Menten envisaged that an enzyme (a catalytic protein) E would react
with another chemical species (the substrate S) by first binding to it to form a complex
C which, in its turn, could either break apart again to restore the original chemicals, or
else go on to form a new pair of chemical species: the original enzyme E and a product
P. Schematically this is represented symbolically as:

E+S=2C—-E+P.

Chemists represent the concentrations of the different chemical compounds by en-
closing the relevant symbols in square brackets; thus [E] stands for the concentration

3Leonor Michaelis (1875-1949) was a German-born biochemist. He fell out with the German aca-
demic establishment when he suggested (correctly) that a widely used pregnancy test was unreliable.
He left Germany and ultimately settled in the USA. Maud Menten (1879-1960) was a Canadian medical
scientist. As a woman, she was denied the prospect of a research career in her native country and so
travelled abroad in 1912; in 1916 she obtained her doctorate under Michaelis’s supervision. She later
worked in both the USA and Canada after entrenched attitudes had softened.
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of enzyme, etc. We represent time by ¢ and imagine that when ¢t = 0, we start the reac-
tion by mixing pure enzyme with pure substrate, that is, at that point in time, [E] = Ej,
[S] =Sy (say) and [C] = [P] = 0.

The subsequent values of these quantities are determined from a chemical law
known as the “Law of Mass Action”, which describes their rates of change. The
three different reactions (indicated by the three arrows in the display above) are each
characterized by specific constants, known as “rate constants”. The first reaction (the
combination of E and S to form C) is given a rate constant £,; the reverse reaction (de-
composition of C to re-establish E and S) has a constant £_;, and the final reaction’s
rate constant is called k,. The rate equations then read:

%[E] = —ku[B][S] + (k_,+k2)[C]
%[5] = —ky[E)[S] + k_,[C]
%[C] = B[E|[S] — (k_,+k2)[C]
%[p] = ky[C].

Besides these four differential equations, there are two conservation equations, ex-
pressing the fact that the total concentration of enzyme (whether complexed or not)
must be the same at all times, and the total concentration of substrate (whether com-
plexed, converted to product or else still around as substrate) must also remain the
same. So we have:

[S]+[CT+[P] = S,

These two equations allow us to reduce the system of four differential equations to
a simpler system involving only two. This pair of equations can be written in many
ways, but the one below is especially convenient.

=151 = =k (E,=[C)IS] + k_4[C]

d

dt

Indeed, further simplification is possible. As the reaction proceeds, [S] is progres-

sively reduced from S to zero while [C] begins at a value 0, then increases to higher
values, before (eventually) returning to its initial (zero) value.

[C] = ky (Bo=[CDIS] = (k_y+k2)[C].



We can write:
[S]=yS, and [C]=:2E, (where 0<y<1,0<2z<1),

and define
T = klE()t, n = E()/S[), Vv = kg/(k:ng),n = k_l/(klso)

so that after some simpliflication we reach a standard form:

j—?i: —y+(y+n)z
pE=y—(y+v+n)z

(I leave the reader to verify this.) These equations are an exact translation of the
Michaelis-Menten reaction scheme into mathematical language. However, no exact
mathematical solution (even after all this simplification) can be provided. We are
forced back onto approximations, and this is where the intermediate asymptotics come
in.

At the outset, we mix an amount Ej, of enzyme with an amount S; of substrate, and
in the practical (biological) situation, Sy is a lot larger than Ej. In other words, p is very
small. The temptation is to approximate by setting u = 0. However, if we then set
t =0,y =1, z =0, the equation makes nonsense. This set of values is precisely the set
that applies initially, so that the approximation envisaged is invalid for small values of
t. We need to restrict ourselves to larger values of t, and this is what Barenblatt meant
by “times ... at which the influence of fine details of initial ... conditions is lost”. When
t is very small, the value of % has to be very large to make the product on the left-hand
side of the second equation equal to the moderate value on the right. We cannot use
the projected approximation for small times.*

Nor can we use this idea for very large times. When the reaction is nearing com-
pletion, we are approaching the state of equilibrium. When equilibrium is reached,
[S] =0 and [E] = E,. All the substrate has been converted to product, the enzyme is
restored to its original state, and there is no more complex left: [C] = 0 and [P] = S,.
The analysis of this aspect of the reaction needs a somewhat different form of the basic
equations, and will not be pursued here. However, this is what Barenblatt is talking
about when he writes about “the system [being] still far from an ultimate equilibrium.”

So let us now look at the intermediate stage. Here we can apply the approximation
1 = 0, and moreover, although initially 4 is large (as we have seen) and although
ulttimately it is large negative (which I haven’t proved here), the system must pass
through a stage for which it is zero and around which it is very small. In analyzing
this stage of the reaction, we are therefore led (on two grounds) to neglect the term %
in the second of the basic equations and so set y = (y + v + ) 2. From this and the

tirst of the basic equations, we may now deduce %: — o (AgainIleave it to the
reader to fill in the details.)

4This type of problem was discussed in more detail in my Function column of February 2004.



Now we are in a position to construct, using sound mathematics, the law that Michaelis
and Menten announced and which, for a long while was justified by demonstrably un-
sound arguments. If we take this last equation and express it in terms of the original
notation, we reach (and yet again I ask readers to fill in the details):

05— i I5) {[) + 2

Now biochemists are especially interested in the rate at which the product appears;
this is termed the velocity of the reaction. Here the velocity, V, is given by

—4d
4 T dt

{[PI} =5 {S0 — [S] - [C]} = —&[SI-%[C] = — &S],

This last approximation follows because < [C] is proportional to 2 which we have
seen to be small during the intermediate stage. So, putting all this together, we have

s k2 Eo[5] _ kit
%4 RS o where K,,= T

The constant K, is known as the “Michaelis Constant”, and the suffix m is there
to remind us of this name. Biochemists also alter the notation somewhat. Again I
leave some details to the reader, but it is not hard to show that, when we plot V against
[S], the result is a steadily climbing curve that ceilings out (“asymptotes” in the more
familiar sense) to the value k; E\, which, because it is an upper bound on V, is termed
Vmax - We thus have as the statement of the Michaelis-Menten Law as usually given:

V=V

This derivation is legitimate, just as long as we remember that it has its limitations:
it does not apply to the very early stages of the reaction nor to the vary last.

I came across another take on intermediate asymptotics recently. Michael Shermer,
who writes the Skeptic column for Scientific American, devoted his September and Oc-
tober 2008 articles to what the popular author Richard Dawkins calls “Middle World”,
or in Shermer’s terminology “Middle Land”. Shermer writes:

In the Middle Land of space, our senses evolved for perceiving objects
of middling size—between, say, grains of sand and mountain ranges. We
are not equipped to perceive atoms and germs, on one end of the scale,
or galaxies and expanding universes, on the other end. In the Middle
Land of speed, we can detect objects moving at a walking or running pace,
but the glacially slow movement of continents (and glaciers) and the mind-
bogglingly fast speed of light are imperceptible. Our Middle Land timescales
range from the psychological ‘now” [approximately] three seconds in dura-
tion ... to the few decades of a human lifetime, far too short to witness
evolution, continental drift or long-term environmental changes.
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Shermer, of course, is concerned to discuss the limits that our Middle Land experi-
ence imposes on our modes of thought. We find the laws of relativity (which involve
the velocity of light) and those of Quantum Physics (which treat the very small) hard to
grasp because they lie outside our Middle Land comfort zone. Barenblatt, by contrast,
shows the benefits of life in Middle Land—benefits that persist as long as we remain
aware of the limitations involved.

Further Reading

The Michaelis-Menten reaction is the subject now of a vast literature, of extremely
varying quality. This is true of what is available on the web as well as to the printed
accounts. The first accurate treatment is that of Heineken, Tsuchiya and Aris in the
very first issue of the journal Mathematical Biosciences (1967). This study already goes
way beyond the brief synopsis given here, and in particular, discusses approximations
valid in the early stages of the reaction and how they may be adjoined to those valid
in the intermediate stages. My co-workers and I wrote in 1981, and extended the
discussion to the late stage, when equilibrium is close to being achieved. Since then,
there has been more progress. In particular the extensive writings of the late Lee Segel
have added yet another chapter to the story.

Yet other lines of research have considered modifications to the basic model. One
such amendment deserves special mention. The basic reaction scheme envisaged by
Michaelis and Menten was:

E+S=2C—=E+P.

Later researchers have thought that this requires elaboration. In its place, they treat
the more complicated process

E+S=0C,2C,— E+P

Here the complex is envisaged as existing in two possible forms, one of which can
revert to its original state, but the other of which can produce (irreversibly) product
in place of substrate. This elaboration has a lot of chemical plausibility, and leads to
more complicated mathematics. However, the success of the simpler model means
that many of these additional complications turn out not to be particularly important
in the analysis of the real-life biochemical interaction.



