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Solutions 1351–1360
Q1351 A city consists of a rectangular grid of roads, withm roads running east–west
and n running north–south. Every east–west road intersects every north–south road. A
construction vehicle travels around the city, visiting each intersection once (and only
once) and finally returning to its starting point. As it travels it builds a fence down
the middle of each road it uses: thus it constructs, in effect, a single long fence which
eventually loops back on itself. How many city blocks are now inside the fence?

SOLUTION If we assume that each block is a square with side length 1 unit, then the
number of blocks inside the fence is equal to the area enclosed by the path. Since the
path is a polygon with lattice points for its vertices we can use Pick’s Theorem:

A = I + 1

2
P − 1 ,

where A is the area enclosed, I is the number of points inside the path and P is the
number of points on the path. In this case there are mn points altogether, and they
are all on the path (because we are told that every intersection was visited). Therefore
P = mn and I = 0, and the number of blocks inside the path is 1

2
mn− 1.

Q1352 Find infinitely many triangles with integer side lengths which contain an an-
gle of 120◦.

SOLUTION If the side lengths are x, y, z with the 120◦ angle opposite side z, the cosine
rule gives

z2 = x2 + y2 + xy .

The best way to deal with this is to write it as

(2z)2 − (2y + x)2 = 3x2 ;

we can find infinitely many solutions by letting x be odd and noting that an odd num-
ber is always the difference of two squares,

2m+ 1 = (m+ 1)2 −m2 .

If x = 2m+ 1 we have 3x2 = 2(6m2 + 6m+ 1) + 1 and so we want

2z = 6m2 + 6m+ 2 , 2y + x = 6m2 + 6m+ 1 ;

solving gives
x = 2m+ 1 , y = 3m2 + 2m , z = 3m2 + 3m+ 1

for m = 1, 2, 3, . . . .
Comments. Takingm = 1we find that a triangle with sides 3, 5, 7 includes a 120◦ angle
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– not a result which everyone knows! Note that we have found infinitely many pos-
sibilities, as the question asked, but we have not found all possibilities. For example
you may check that the triangle with sides 7, 8, 13 includes a 120◦ angle but does not fit
into the above pattern.

Correct solution received from John Barton, Victoria.

Q1353

(a) On a 4×n chessboard we wish to place 2n knights in such a way that none attacks
any other. Give three possible ways of doing this.

(b) Prove that there is no closed knight’s tour on the 4× n board.

SOLUTION

(a) A knight on a chessboard always moves to a square of a different colour. So if we
put knights on the 2n white squares of a 4 × n board, none will attack another.
A second solution, of course, is to put the knights on the black squares. A third
solution is to place them on the two sides of length n: since there are two empty
rows between them, the knights on one side cannot “reach” those on the opposite
side.

(b) Now suppose that there is a closed knight’s tour on the 4×n chessboard, and con-
sider how we can use this tour to locate 2n non–attacking knights. Since no two
consecutive squares on the tour can be occupied by non–attacking knights, there
are only two possible placements for the 2n knights: on every second square of the
tour, or on every other second square of the tour. But we know that there are in
fact three ways to place the knights (perhaps more): the only possible conclusion
is that the closed knight’s tour on the 4× n board cannot exist.

Q1354 A sequence a1, a2, a3, . . . of positive integers has the properties

a2
n
− an−1an+1 = 1

for all n ≥ 2, and a1 = 1.

(a) Prove that a2 cannot equal 1.

(b) Prove that if a2 = 2 then an = n for all n.

(c) Prove that if a2 ≥ 3 then an > an−1 + 1 for all n ≥ 2.

(d) Find all values of a2 and all values of n such that an = 2011.

SOLUTION

(a) If a2 = 1 we immediately get a3 = 0 which is not a positive integer.

(b) The proof is by mathematical induction. If a2 = 2 then an = n for n = 1, 2; if n ≥ 3
and the result is true for an−1 and for an then

an+1 =
a2
n
− 1

an−1

=
n2 − 1

n− 1
= n+ 1 .
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(c) Proof by induction. With a2 ≥ 3 it is clearly true that an > an−1 + 1 for n = 2. If
the inequality is true for some specific n ≥ 2 then

an+1 =
a2
n
− 1

an−1

= (an + 1)
an − 1

an−1

> an + 1 .

(d) From (b) it is clear that one solution is a2 = 2, a2011 = 2011; since a2 can be any
positive integer except 1, another solution is a2 = 2011. We shall prove that there
are no further solutions. So, suppose that a2 ≥ 3 and n ≥ 3. Then we have

anan−2 = a2
n−1 − 1 = (an−1 + 1)(an−1 − 1)

and so an is a factor of (an−1 + 1)(an−1 − 1). But if an = 2011, which is a prime
number, this means that either

an | an−1 + 1 or an | an−1 − 1 ;

since an > an−1 + 1 this is impossible. (The notation x | y means that x is a factor
of y.)

Q1355 Let n be a positive integer and suppose that 2n and 5n begin with the same
digit. Prove that there is only one possibility for this digit.

SOLUTION Suppose that the number 2n consists of a digit a followed by s further
digits and 5n consists of a followed by t further digits. Then we have

2n = (a+ x)10s and 5n = (a+ y)10t ,

where 0 ≤ x < 1 and 0 ≤ y < 1. Multiplying these equations,

10n = (a+ x)(a+ y)10s+t

and so
(a+ x)(a+ y) = 10n−s−t .

However n− s− t is an integer, and 1 ≤ (a+ x)(a+ y) < 100, so either

(a+ x)(a+ y) = 1 or (a+ x)(a+ y) = 10 .

In the first case we have a = 1, x = 0, y = 0, so 2n = 10s; since n is a positive integer,
this is impossible. In the second case we have

a2 ≤ (a+ x)(a+ y) < (a+ 1)2 ,

that is,
a2 ≤ 10 < (a+ 1)2 ,

and so a = 3 is the only possible digit. And indeed, if n = 5 then 2n = 32 and 5n = 3125,
both of which start with a 3.
Comment. In fact, it is possible to show that there are infinitely many such n: the
numbers 2n and 5n both begin with 3 for n = 5, 15, 78, 88, 98, 108, 118, . . . (however the
obvious pattern does not continue).

Partial solution received from John Barton, Victoria.
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Q1356 Let N = 11! How many positive cubes divide N?

SOLUTIONWe have

11! = 11× 10× 9× 8× 7× 6× 5× 4× 3× 2× 1

= 11× 7× 52 × 34 × 28

= 11× 7× 52 × 3× 22 × 123 .

Therefore n3 divides 11! if and only if n divides 12: there are six possibilities, namely,
123, 63, 43, 33, 23 and 13. Now try problem 1368 in this issue.

Q1357 Find the sum of the digits of the number

N = (20112)(6252011)(44022) .

SOLUTIONWe have

N = (20112)(6252011)(44022)

= (2011)2 × (10000)2011

= 40441210000 · · · 0000

and the sum of the digits is 16.

Correct solution received from John Barton, Victoria.

Q1358 Suppose that log (x2y2n) = 1 and log (x2ny2) = 1 where x and y are positive
numbers and n is a positive integer. Show that

log (xnyn) < 1 .

SOLUTIONAdding the given equations and remembering the identity logX+log Y =
log(XY ) gives

log(x2n+2y2n+2) = 2 .

Using log(Xm) = m logX , we have

(2n+ 2) log(xy) = 2

and therefore

log(xnyn) = n log(xy) =
2n

2n+ 2
< 1 .

Correct solution received from John Barton, Victoria, who also proved from the given
equations that x and y must be equal.

Q1359 Simplify

1√
2 +

√
1
+

1√
3 +

√
2
+

1√
4 +

√
3
+ · · ·+ 1√

2011 +
√
2010

.

4



SOLUTION For any positive real number xwe can rationalise the denominator to get

1√
x+ 1 +

√
x
=

1√
x+ 1 +

√
x

√
x+ 1−√

x√
x+ 1−√

x
=

√
x+ 1−

√
x .

Therefore

1√
2 +

√
1
+

1√
3 +

√
2
+

1√
4 +

√
3
+ · · ·+ 1√

2011 +
√
2010

=
√
2−

√
1 +

√
3−

√
2 +

√
4−

√
3 + · · ·+

√
2011−

√
2010

=
√
2011− 1 .

Correct solution received from John Barton, Victoria.

Q1360 Shown below is a map of walking paths around a garden. Paths meet at the
points labelled A to M . Note that x is not a path intersection but a place where one
path runs along a bridge over another. Bridget is standing on top of the bridge at x
and wishes to take a walk around the garden, visiting every path intersection exactly
once and returning to x. In how many ways can she do this?

A B

C

EF

G D

H
J

K

LM
x

SOLUTION Clearly Bridget’s walk must include the path JL along the bridge. Con-
tinuing from L she would have to take either LC or LD; for a start let’s assume that she
takes LC. Since she visits each intersection once only she can never use the path LD,
as this would entail a repeat visit to L; since she must visit D, her path must include
both CD and DE. Now she cannot take BC and hence must use both of AB and BK;
it follows that she must at some stage walk along the path KM below the bridge, and
along AH .

Now Bridget cannot take path HJ : if she did, GH and GJ would both be ruled out
and she could never visit G (or if she did, she could never get back to the start). So she
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must take paths GH and GJ ; for similar reasons she must take EF and FM , and this
completes her tour of the garden. We have found only one possible route; but if we
had assumed initially that she took LD instead of LC we would have found another.
Also, each of these circuits could have been walked in either direction. So there are
four possibilities altogether.
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