Parabola Volume 47, Issue 3 (2011)

Large Splines
Bill McKee !

This article is fundamentally about the calculations behind the ways in which com-
puters draw graphs. In the era before computers (unknown to most of you, but very
familiar to me!) graphs were drawn on paper. Typically, the data points were plotted.
Next, pins were placed in the paper at these data points and a thin flexible piece of
wood was threaded around these points to produce a nice smooth shape which was
then traced by hand. This piece of wood was known as a spline. The word itself ap-
parently derives from a dialect word from the East Anglia region of England for a strip
of wood and is related to the word splinter. This article will present a computational
method which approximates the behaviour of a spline. This method, and generalisa-
tions thereof, underlie much of computer graphics.

An earlier article in Parabola Incorporating Function (Volume 44, Number 3) showed
how to construct a polynomial which passed exactly through some data points. Splines
provide a different way of constructing a smooth curve which also passes exactly
through the given data points and avoids some of the pitfalls which can be sometimes
associated with the earlier procedure.

The Problem of Interpolation

Suppose that we have n + 1 data points (z;,y;) for i = 0,1,...,n where the z; are
all different. The z; need not be equally spaced, but are assumed here to be in increas-
ing order. The interpolation problem is one of finding a function which passes exactly
through the given data points. There are an infinite number of such functions but we
obviously aim to find a simple interpolating function which is a good approximation
to the underlying function of which the data points are point values. The article men-
tioned above showed how to construct a polynomial of degree n which passed exactly
through all of these points. It also showed that there was only one such polynomial of
degree n. As pointed out in the earlier article, it would probably be better to refer to
this polynomial as having degree at most n since, for example, three points might just
happen to lie on a straight line rather than a parabola. So, when we refer to the inter-
polating polynomial as being of degree n, it is to be understood that the degree is at
most n. One of the main reasons for interpolation is to estimate the value of quantities
between the given data points. For example, we might have temperature measure-
ments taken every hour and want to estimate the temperature at some intermediate
time. Often the use of this interpolating polynomial gives quite satisfactory results.
This is demonstrated in Figure 1 for the sine function. The = points are zo = 0, x; = 0.5,

!Dr Bill McKee is a Visiting Fellow in the School of Mathematics and Statistics at the University of
New South Wales.

9 = 1.0, ..., 210 = 5 and the y points are y; = sin z; fori = 0,1,...,10. (Remember that
x is measured in radians not degrees). The sine function itself is not shown since it is
virtually indistinguishable from the interpolating polynomial of degree 10 at the scale
depicted.

—-0.5 =

Figure 1: The dots represent the data points for the sine function. The line is the inter-
polating polynomial of degree 10 passing exactly through these points.

However, things are not always so rosy and polynomial interpolation can some-
times go spectacularly wrong. The basic reason for this is that if we have a large
number of data points the interpolating polynomial will be of high degree. Now a
polynomial of degree n can have as many as n — 1 local maxima and minima; that is to
say it may be quite ‘wiggly’. Some of these wiggles may lie between z, and z,, which
can sometimes lead to inaccurate results. For example, consider the simple function

f(x) = 0.1)

and suppose we choose our z points to be o = —3, 1 = —2.5, 29 = =2, ..., 112 = 3
and the corresponding y values to be y; = f(z;) fori = 0,1,...,12. The interpolating
polynomial will be of degree 12 and is shown in Figure 2 as a thin solid line along
with the data points shown by dots and f(z) shown by a thick solid line. As you
can see, the interpolating polynomial is not providing a good approximation to the
original function from which the data points were obtained, particularly closer to the
end points of the region. We might try to remedy this by using more points. For
example, in Figure 3 we use 19 equally spaced points rather than 13. The problem is
getting worse!

If all we know are the data points then any interpolating function will satisfy the
requirement of passing through the data points but may not seem reasonable to us.

2

Figure 2: The dots represent the data points. The thin line is the interpolating polyno-
mial of degree 12 passing exactly through these points and the thick line is the function
defined by equation (0.1).

Suppose, for example, that the data points in Figure 2 represented hourly temperature
measurements. It is extremely unlikely that the real, but unmeasured, temperature
exhibited such huge fluctuations away from the data points and any sensible meteo-
rologist would reject this graph as a useful tool for estimating the temperature at times
between data points. Another problem which may arise is that the form of the interpo-
lating polynomial could be quite sensitive to small changes in the data. For example,
suppose we had three points which happened to lie in a straight line. Altering one of
the points slightly would turn that straight line into a parabola.

The Concept of a Spline

We now abandon the idea of using a single polynomial to interpolate the data for
all = between z, and z,,. Instead we use a different and simpler polynomial between
each of the data points and then match them up somehow at the data points. Indeed,
you will already be familiar with the technique of connecting adjacent data points by
straight lines, as shown in Figure 4. This is sometimes called a linear spline. In this
example, the use of a linear spline has avoided the huge errors associated with the
high-degree interpolating polynomial but is not a particularly accurate approximation
to f(z) and has a discontinuous slope at each of the data points. We could try using
parabolic arcs rather than straight lines (this gives rise to quadratic splines) but it turns
out that it is better to use cubics rather than quadratics which gives us the cubic splines
to which we will turn our attention after first briefly discussing linear splines.

Figure 3: As in Figure 2 except that we have used 19 equally-spaced points which
means that the interpolating polynomial is of degree 18.

Linear Splines
The idea here is to use straight lines to interpolate our data. Thus between z; and
xjyq for j =0,1,...,n — 1 we define our linear spline interpolant to be

Sj(x) = Aj + pjz

upon which we impose the conditions S;(z;) = y; and Sj(x;41) = yj4+1 . As you know,
the equation of the straight line passing through the two given points can be written as

(yj+1 - yj)

(i1 — ;) (= 13) 02

y=9j(z) =y; +

from which \; and y; could be written down if desired.

Cubic Splines
As outlined above, we now use cubics rather than straight lines to interpolate our
data. Thus between z; and z;;, for j = 0,1,...,n — 1 we define our cubic spline

interpolant to be
Si(r) = o + Bjx + v + 620 (0.3)

It is important to note that the coefficients o, 5;, 7; and §, vary from one interval to
the next since we are using different cubics in each of the intervals.
Guided by equation (0.2) we re-write equation (0.3) as

53(1’) = Gy + bj(l’ — ZL’j) + Cj(I — .Z‘j)z + dj(l‘ - .Ij)3. (04)

Figure 4: As in Figure 2 except that we have connected adjacent points by straight
lines and thus constructed a linear spline. The function defined by equation (0.1) is not
shown.

What we are doing here is referring the spline to the left-hand endpoint of the in-
terval over which it is defined, rather than to = = 0. This is sensible because equation
(0.4) only applies for ; < x < x;1. Notice also that setting c¢; = d; = 0 gives our linear
spline equation (0.2) with appropriate choice of a; and b;.

There are four unknowns in (0.4) and hence in total there are 4n unknowns and
hence we will need 4n conditions from which to determine them. Clearly we want our
cubic to agree with the data at each endpoint. In contrast with the case of linear splines
we can also require that the slope (i.e. the first derivative) of the spline in one interval at
the endpoint matches with that of the spline in the next interval at that point. Clearly,
we can only do this at the interior points and not at z; or z,. We can also impose
a similar condition on the second derivatives at the interior data points. These two
conditions together mean that the curvatures of the spline also match at these points.
This gives rise to a nice smooth curve. Thus, the requirement that the spline passes
exactly through all the data points requires:

Sj(l‘j) = Yj for j:O,]_,...7TL—1 (05)
Sj(ijrl) = Yj+1 for j = O, 1, N (e 1 (06)

Similarly, the requirement that the first and second derivatives of the spline seg-
ments match at each of the interior points requires:

Sj/(l’]qu) = j/+1(xj+1> for j = 0,1,...,71-2 (07)

S'//(Z']url) = 5#1(37%1) for j:(),l,...,n—2 (08)

J

where ' denotes one differentiation with respect to = and hence '’ denotes two differ-
entiations with respect to x.

So far, we have 4n — 2 conditions imposed and 4n coefficients to be found. Two
more conditions are needed. Many conditions are possible but two of the most most
commonly used conditions are:

1. To specify the derivative at =, and z,, or

2. To require that the second derivative is zero at =, and at z,,.

The first of these would generally be used if we were trying to interpolate a known
function such as the one defined by (0.1). The required derivative values are then
known numbers. This produces what is known as a clamped spline. The second is gen-
erally used to interpolate data such as hourly temperature measurements. Physically,
it is saying that the interpolation function has zero curvature (i.e. is straight) at the
two endpoints. This corresponds to the situation which existed at the endpoints when
a wooden strip was passed through the data points and protruded unconstrained be-
yond the first and last points. It produces what is known as a natural cubic spline.

In passing, let us see what would happen if we tried to use quadratics rather than
cubics for our spline. This would be accomplished by setting d; = 0 in equation (0.4)
leaving now only 3n coefficients to be found. Equations (0.5) and (0.6) together provide
2n conditions while equation (0.7) provides another n — 1 which makes 3n — 1 in total
leaving us with only one more condition to impose. Since there are two end points we
can impose a condition at one of them only. This is unsatisfactory since one end point
is being treated differently from the other. This is the basic problem with attempts to
use quadratic splines. There are ways around this difficulty using a slightly different
approach but cubic splines generally give smoother curves anyway and have some
nice mathematical properties which are too complicated to discuss here.

Before treating the general case for a cubic spline let us look at a simple example.

Only two points
Suppose we have only two points (2, y9) and (z1, y1). Our cubic spline would then
be
S()(x) =ag + bg(ZE — l’g) + C()(.%‘ — 130)2 + do(l’ - .To)3. (09)

From this we see that
Sq(x) = by + 2co(z — x0) + 3do(z — 70)?
and
Sy’ (x) = 2¢o + 6do(x — x0)

The condition that Sy(x¢) = yo thus requires that ay = v, and this plus the condition
that Sy(x1) = y1 requires
Y1 = Yo + boho + cohg + dohiy (0.10)

where hy = z; — ¢ is the spacing between the two points. Here there are no interior
points and we have only the two end points at which to impose conditions to deter-
mine ¢p and d,. It is an easy matter to check that imposing the condition that the second

6

derivative vanish at = and at z; leads to ¢y = dy = 0 which means, not surprisingly,
that we are back to our linear spline. However, now let us suppose that instead we
imposed the conditions

Sy(zg) = Koy and Sy(x1) = K
in order to find a clamped spline. Then
Ky=by and K;= Kg+ 2coho + 3dohj
thus using equation (0.10) we see that we have to solve

cohi + dohy = 31 — yo — Kohy (0.17)
200h0 + 3d0h8 = Kl — KU (012)

for the only two remaining unknowns ¢, and dy. You probably remember how to do
this but, in case you have forgotten, one way would be as follows. We multiply the
tirst by 2/hy. The coefficient of ¢, in both equations is then 2h,. So, subtracting the
two equations gives a new equation in which d is the only unknown and so is readily
solved. This value of dj is then substituted back into either of the original equations
which thus becomes an equation in which ¢, is the only unknown and so is easily
solved for ¢y. You should try this for yourself and should obtain the answers

3(y1 — yo) — ho(K1 + 2K)

o = 2 (0.13)

ho(K1 + Ky) — 2(y; —
dy = o(K7 + 0])13 (y1 — Yo) (0.14)
0

As an example, consider the function defined by equation (0.1). For this function

—2x

f’(x):m

Let us take zp = 0 and z; = 1. Then hy = 1, yo = f(0) = 1 and y; = f(1) = 0.5.
Furthermore, Ky = f'(0) = 0 and K; = f’(1) = —0.5. Using the above formulae we
find ap =1, by = 0, ¢p = —1 and d, = 0.5. Hence our spline is
3

So(zc)zl—xz—l—%
which is plotted in Figure 5. As you can see, this is giving a much better approximation
to the original function than a linear spline would do. This is hardly surprising since it
incorporates four pieces of information rather than just two.

The General Case

0.75

0.5 :

Figure 5: The solid line is the simple cubic spline passing exactly through the two end
points and having the correct slope at these points while the dotted line is the function
defined by equation (0.1).

Let us now return to the general case. The details are quite messy and you may
prefer to skip over this section. If you do so, then it suffices for you to know that we can
solve the above equations for the 4n coefficients a;, b;, c; and d; for j = 0,1,...,n — 1.

Anyway, it is convenient to define:

hj=zj41—2x; for j=0,1,...,n—-1
and
(n = Yn
This definition plus equation (0.5) requires that
aj=vy; for j=0,1,...,n (0.15)
while this plus equation (0.6) requires that
Yjt1 = aj41 = a; + bjhj + ¢;h + d;h for j=0,1,...,n—1 (0.16)

Let us now match the derivatives at the interior points and introduce the definition
b, = S, _,(x,). Noting that

S!(z) =bj + 2¢;(x — x;) + 3d;(z — a:j)Q

J

and using equation (0.7) we can see that

bj+1 = bj + Qthj + 3djh§ for j = 0, 1, N 1 (017)

Finally, let us now match the second derivatives at the interior points and introduce
the definition ¢, = S,)" | (x,,)/2. Noting that
S”(JJ) = QCj + 6d3($ - $j)

J

and using equation (0.8) we can see that
Ci+1 = Cj+3djhj for] :O,l,...,n— 1 (018)

In the case of a natural cubic spline, which is the only one we shall consider here,
the condition S;’(z) = 0 requires that ¢y = 0 while the condition S’ ; (x,,) = 0 requires
that ¢, = 0. (In the case of a clamped cubic spline these are replaced by conditions
which I leave it to you to write down.)

We now systematically eliminate all variables in favour of the c;. The result is a
system of n — 1 simultaneous linear equations for the n — 1 coefficients ¢, cs, ..., ¢,—1.
Forj =1,...,n — 1, the jth equation is

hj-1¢j—1 + 2(hj—1 + hy)e; + hjcia = 3y — y5) /by — 3(y; — yi—1) /b

which obviously simplifies if the h; are all equal, i.e. if the x; are equally spaced. The
system is solved by a systematic elimination procedure which is a generalisation of the
method we used to solve equations (0.11) and (0.12). Don’t worry too much about the
technical details. Once the c; are known, we can find the d; from equation (0.18) and
hence the b; from (0.17). The a; are already known from (0.15).

An Example

As an example, let us consider the data in Table 1 which has been generated in
an approximately random manner. The z; are not equally-spaced. To fix ideas, we
might think of the z; as time measured in seconds and the y; as measurements of some
quantity such as the temperature or pH of a solution undergoing a chemical reaction.

r; 123129134140 |50|7.7]85[89]92]9.5
¥i | 4.6 122]115]80]65|03]59|42]44|5.0

Table 1: A typical data set.

Figure 6 shows these data points together with the interpolating polynomial of de-
gree 9 plus the natural cubic spline. The point of trying to interpolate the data here
would be to estimate the temperature or pH at times between observations. Clearly,
the natural cubic spline gives a much more credible result than the interpolating poly-
nomial of degree 9.

In passing, let it be noted that if we were to use a natural cubic spline rather than
a high-order interpolating polynomial as in Figure 2 or Figure 3 then the spline would
be graphically indistinguishable from the original function at the scale depicted. For
this reason, we will not present the graphs here.

9

15

—15 _

Figure 6: The thick line is the natural cubic spline passing exactly through the data
points in Table 1 while the thin line is the interpolating polynomial of degree 9 passing
exactly through these same points.

Discussion

We have seen that the use of cubic splines can avoid some of the overshooting
sometimes associated with interpolating polynomials of high degree. They are widely
used in industrial design and computer graphics to produce nice smooth curves. It
is relatively easy to modify the procedure described above to handle cases where the
curve being described has sharp interior corners. Rather than requiring that the first
and second derivatives be continuous at that point, we specify the derivatives at either
side of this point. It can also be generalised to use more general functions not just
cubics. The ideas introduced here can be extended to two dimensions to plot surfaces.
Virtually all computer graphics packages and applications use splines in one form or
another.

As you might imagine, there is a large amount of material on the web about splines.
You might like to start at

http://en.w ki pedi a. org/ wi ki/ Spline_(mathemati cs)

and follow some of the links there.

10

http://en.wikipedia.org/wiki/Spline_(mathematics)

