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Shuffling Along and Cycling Around
David Angell 1

Many readers will at some time have played games with a pack of cards. In most
games one begins by shuffling the cards so as to randomise their order. There are
various different ways of shuffling, one of the most popular being the riffle shuffle . In
this shuffle, the pack is split into two roughly equal parts, one is held in each hand,
with the edges adjacent:

The thumbs are used to flip through the two parts so that they are merged together
again, cards falling more or less from each hand alternately. If you haven’t seen a riffle
shuffle before, this description probably didn’t help much! Perhaps the picture2 will
give you the idea, or you could ask a friend to demonstrate. If you want to see a video
of the riffle shuffle, just go to YouTube [1]. For this article we’ll work with a standard
pack of 52 cards, and we’ll imagine that we can perform a perfect riffle shuffle: that
is, we begin by dividing the pack into two parts of exactly 26 cards each, and then we
combine them by interleaving exactly one card at a time from each hand. This still
leaves two possibilities, depending on which hand releases the first card: the bottom
card after the shuffle could be the original bottom card, or it could be the last card
from the top half (that is, the original 26th card). The former possibility is known as an
outshuffle , the latter as an inshuffle .

It might seem very difficult to do an absolutely perfect riffle shuffle. (It is – I’ve
tried it!) Amazingly, some people can do it. Even more amazingly, some people can do
it eight times in a row! Most amazingly of all, if you perform eight successive perfect

1Dr David Angell is a Pure Mathematician and Associate Lecturer in the School of Mathematics and
Statistics at the University of New South Wales.

2Photo: Todd Klassy, available from Flickr under Creative Commons 2.0 at
http://tinyurl.com/pnt6ngz .
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outshuffles, the pack returns to its original order!! Of course you can check that this is
true by doing your riffle shuffles very slowly and carefully, but that takes forever and
is extremely boring. So let’s do it by mathematics instead.

We need to begin by being very clear on what a shuffle actually is. Imagine that I
perform a very simple shuffle by taking the top card of the pack and placing it on the
bottom. Then I shuffle again by taking the (new) top card and placing it on the bottom.
Even though I have moved different cards, I have just performed the same shuffle
twice: a shuffle is not a rearrangement of specific cards, but a way of rearranging cards .
In mathematical terms, it is a function s, where s(k) is the position after the shuffle of
the card which was in position k before the shuffle. Note that this has nothing to do
with the particular card in any position before or after the shuffle. For example, in the
simple shuffle we have just considered (twice), the card in position 1 goes to position 52
while every other card moves up to the previous position. So this shuffle is described
by the formula

s(k) =

{

52 if k = 1

k − 1 if k = 2, 3, . . . , 52.

Now how about a riffle shuffle? For an outshuffle we split the pack into two halves,
one consisting of the cards in positions 1, 2, . . . , 25, 26 and the other of those in positions
27, 28, . . . , 51, 52; then we interleave the two halves. Since the card in position 52 after
the shuffle is the same as that in position 52 before the shuffle, we see that the cards in
positions 27, 28, . . . , 51, 52 end up in positions 2, 4, . . . , 50, 52, while those in positions
1, 2, . . . , 25, 26 end up in positions 1, 3, . . . , 49, 51. Thus

out(1) = 1, out(2) = 3, . . . , out(25) = 49, out(26) = 51
out(27) = 2, out(28) = 4, . . . , out(51) = 50, out(52) = 52

With a bit of thought you can see that the shuffle is described by the formula

out(k) =

{

2k − 1 if k = 1, 2, . . . , 26

2k − 52 if k = 27, 28, . . . , 52.

There is an alternative way to write down a shuffle, based on calculating where the
card in a given position goes if the pack is repeatedly shuffled in the same way. For
example, it is easy from the preceding formulae to see that the destiny of the card
originally in position 2 is given by

out(2) = 3, out(3) = 5, out(5) = 9, out(9) = 17
out(17) = 33, out(33) = 14, out(14) = 27, out(27) = 2

We write this information as a cycle

( 2 3 5 9 17 33 14 27 ) ,

which signifies that an outshuffle moves the card from any position in the list to the
following position, where the last one “wraps round” to the beginning. Similarly, an
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outshuffle takes the card from position 18 to position 35, and that from position 35 back
to 18, so these numbers form a cycle

( 18 35 ) .

The card in position 1 is not moved by an outshuffle, so it is in a cycle by itself,

( 1 ) .

Calculating what happens to every card in the pack enables us to write the shuffle as
a product of cycles . (“Product” is not really the right word, but let’s leave that until
later.) The complete outshuffle is

out = ( 1 )( 2 3 5 9 17 33 14 27 )( 4 7 13 25 49 46 40 28 )

( 6 11 21 41 30 8 15 29 )( 10 19 37 22 43 34 16 31 )

( 12 23 45 38 24 47 42 32 )( 18 35 )

( 20 39 26 51 50 48 44 36 )( 52 ) .

Exercise. Check this calculation; use similar methods to show that the inshuffle is
defined by

in(k) =

{

2k if k = 1, 2, . . . , 26

2k − 53 if k = 27, 28, . . . , 52

and consists of a single cycle

in = ( 1 2 4 8 16 32 11 22 44 35 17 34 15 30 7 14 28 3 6

12 24 48 43 33 13 26 52 51 49 45 37 21 42 31 9 18

36 19 38 23 46 39 25 50 47 41 29 5 10 20 40 27 ) .

Now let’s consider what happens when we repeat the same shuffle over and over
again. Remember that our aim is to prove, with a minimum amount of work, the state-
ment I made earlier: eight successive perfect outshuffles will return the cards to their
original arrangement. Once again it’s important to get our ideas clear: just what is a
repeated shuffle? Remember that a shuffle is a function; a repeated shuffle means ap-
plying a function to the result of another (or the same) function: that is, it is a function
of a function, sometimes called a composition of functions. To remind you of this idea
we do a simple example from school work: if

f(x) = x2 and g(x) = x+ 1

then
f(g(x)) = f(x+ 1) = (x+ 1)2 ,

Where we take x, apply the formula for g, then apply the formula for f to the result.
Note that the order is important:

g(f(x)) = g(x2) = x2 + 1 ,
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which is not the same as f(g(x)). We shall use the symbol ◦ to denote function compo-
sition: thus, we have just calculated formulae for f ◦ g and g ◦ f .

We can do exactly the same kind of things with shuffles: the shuffle s1 ◦ s2 is ob-
taining by performing the shuffle s2 first, then performing s1 on the result. Once again
order is important. For example, consider s, the simple shuffle from page 2, and in, the
inshuffle. If we do s first and then in, the card in position 1 goes to position

in(s(1)) = in(52) = 51 ,

while if we do them in the opposite order it goes to

s(in(1)) = s(2) = 1 .

Therefore we have
in ◦ s(1) = 51 and s ◦ in(1) = 1 ,

and regardless of what happens to other cards, these two shuffles cannot be the same.
This should raise a question about the waywewrote a shuffle as a product of cycles.

A cycle is itself a particular kind of function – that is, a particular kind of shuffle: for
example, the cycle c = ( 31 41 5 ) is the function defined by

c(31) = 41 , c(41) = 5 , c(5) = 31 ,

c(k) = k for all other values of k.

Therefore our previous expression gives the outshuffle as a composition of cycles . (As
I mentioned earlier, the term “product”, though quite commonly used, is not really the
right word.) We calculated the expression for the outshuffle by first considering what
happened to the card in position 1, then position 2 and so on. If we had considered
the cards in a different order we would probably have written the cycles down in a
different order: would this have mattered? In this case it would not, because a very
important fact about shuffles is that disjoint cycles commute. That is, if c1 and c2 are
cycles with no elements in common, then c1 ◦ c2 is the same as c2 ◦ c1. To understand
why this is true, let’s reduce our pack to five cards and consider the cycles

c1 = ( 1 3 5 ) and c2 = ( 2 4 ) .

If k = 1, 3 or 5 then the card in position k is unmoved by c2, which only moves the card
in position 2 to position 4 and vice versa. So

c1(c2(k)) = c1(k) .

But in this case c1(k) is also 1, 3 or 5 and is therefore unmoved by c2, so

c2(c1(k)) = c1(k) = c1(c2(k)) .

On the other hand, if k = 2 or 4 then k and c2(k) are both unmoved by c1 and so

c2(c1(k)) = c2(k) = c1(c2(k)) .
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This shows that each of our five cards is moved by c1 ◦ c2 in exactly the same way as it
is moved by c2 ◦ c1, and so these two shuffles are the same. That is,

( 1 3 5 )( 2 4 ) = ( 2 4 )( 1 3 5 ) .

In this special case , the order in which we write the shuffles does not matter.
Exercise. Show that if c1 = ( 1 3 5 ) and c2 = ( 2 3 4 ), then the shuffles c1 ◦c2 and c2 ◦c1
are not the same.

Now we want to know: how many repetitions of a given shuffle does it take to get
every card back to its original place? First, again, let’s consider a simple shuffle of five
cards,

c1 = ( 1 3 5 ) .

Note that 2 and 4 are not specified here: this means that the cards in these positions are
not moved by the shuffle. We could write the same shuffle as

( 1 3 5 )( 2 )( 4 ) ,

but it’s more convenient to leave it as above. It should be easy to see that if we perform
c1 twice in succession we get the cycle

c2
1
= c1 ◦ c1 = ( 1 5 3 ) ,

and three times gives
c3
1
= c1 ◦ c1 ◦ c1 = ( 1 )( 3 )( 5 ) ,

which can also be written
c3
1
= ( 1 )( 2 )( 3 )( 4 )( 5 ) .

That is, c3
1
leaves every card unmoved. It is what mathematicians call the “identity

shuffle”, which in ordinary language is no shuffle at all! But it is mathematically con-
venient to regard a shuffle as being any arrangement of cards, including the one which
just leaves every card where it was.

So, it takes three repetitions of c1 to restore the pack to its original arrangement. It
should be easy to see that for c2 = ( 2 4 ) it takes two repetitions to do this, and a little
thought will convince you that for

s = c1 ◦ c2 = ( 1 3 5 )( 2 4 )

it takes a minimum of six repetitions, and for the seven–card shuffle

s = ( 1 2 3 4 )( 5 6 )( 7 )

it takes a minimum of four.
Question. Before reading further, can you see the pattern?

Given a shuffle s, the minimum number of repetitions of s which are needed to
restore the pack to its original sequence is called the order of s; if s is a composition of
disjoint cycles having lengths l1, l2, . . . , lm, then

order(s) = lcm(l1, l2, . . . , lm) ,
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the least common multiple of the cycle lengths. In particular, finding the number of
outshuffles needed to return a 52–card pack to its original arrangement is now ridicu-
lously easy:

order(out) = lcm(1, 8, 8, 8, 8, 8, 2, 8, 1) = 8 .

Exercise. How many inshuffles does it take to restore the original arrangement of the
pack?

There are a few important questions that should be asked about shuffles and cycles.
• Can every shuffle be written as a composition of cycles?

• For a given shuffle, is there only one way to write it as a product of cycles?

• With regard to our definition of “order”, is it really true that every shuffle, if
repeated, will sooner or later restore all the cards to their original locations?

We have more or less taken all these questions for granted in the preceding discussion.
In fact, the answer to all three questions is “yes” (with certain qualifications in the sec-
ond case), and if we wished to investigate the subject thoroughly we should carefully
prove this. Rather than do so, however, let’s see how the cycle representation of a shuf-
fle makes it quite easy to answer some other questions about the arrangement of cards
in a pack.
What is the maximum order of any shuffle of a 52–card pack? In other words, we
want to find shuffles which require as many repetitions as possible before the pack
resumes its original arrangement. Suppose that the shuffle can be written as a product
of cycles which have lengths l1, l2, . . . , lm. Since we are shuffling a 52–card pack we
must have

l1 + l2 + · · ·+ lm = 52 ,

and we wish to find the maximum possible value of lcm(l1, l2, . . . , lm), subject to this
restriction. This is not an easy calculation. To get the largest possible lcmwewould like
the cycle lengths to include lots of large independent factors, but unfortunately this is
not really possible: the cycle lengths must add up to 52, so if there are lots of them they
can’t be large, and if they are large there can’t be lots of them! For example, letting
one of the cycle lengths be a large prime number, say l1 = 47, will be a good start for
obtaining a large lcm; but it will leave us nowhere much to go, as the remaining cycle
lengths can only add up to 5. We have to compromise by taking a “reasonable lot” of
“fairly large” cycle lengths, and it turns out that the best we can do is

lcm(13, 11, 9, 7, 5, 4, 1, 1, 1) = 180180 .

An example of a shuffle with the indicated cycle lengths is

s = ( 1 2 . . . 13 )( 14 15 . . . 24 )( 25 26 . . . 33 )

( 34 35 . . . 40 )( 41 42 . . . 45 )( 46 47 48 49 )

( 50 )( 51 )( 52 ) .

Notice, by the way, that having a large order does not make s a good shuffle for ran-
domising the pack! In this case the first 13 cards always remain in the first 13 positions,
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likewise for the next 11 and so on – this is not something that we would be likely to
accept as a “random rearrangement”.

In s, it might seem wasteful to have the last three elements in cycles of their own.
However it turns out that we cannot increase the order by doing anything else with
these elements.
Exercise. Check that if we replace the last three cycles in s by a single cycle ( 50 51 52 ),
the order of the amended shuffle is still 180180.

For our next question we ignore the values ace to king on the cards and concentrate
on the suits alone, so that we have 13 identical spades, 13 identical hearts and so on.
Is it possible to arrange the pack so that it looks the same after a single outshuf-
fle? Remember we are assuming that there are only four “different–looking” cards, so
that even though cards have moved after the shuffle, it may not be possible to tell the
difference by looking at them.

To answer this question refer back to the expression for out as a product of cycles,
and note that the card in position 2 before the shuffle is in position 3 after the shuffle.
If the pack is to appear unchanged by the shuffle, the cards in positions 2 and 3 in the
given deck must be of the same suit. For similar reasons the card in position 5 must
be of the same suit too, and in fact so must all the cards 2, 3, 5, 9, 17, 33, 14, 27 which
occupy a single cycle. So we have to split our four suits of 13 cards into groups of
sizes 1, 8, 8, 8, 8, 8, 2, 8, 1, each consisting of one suit only. It is easy to see that this is
impossible.

As we cannot arrange our pack so as to look the same after a single outshuffle,
can we arrange the pack so that it looks the same after two consecutive outshuffles?
We answer this question in the same way as the previous one, first finding the cycle
representation of out ◦ out. In fact, to find the square of a cycle is quite easy. Performing
the cycle

c = ( 2 3 5 9 17 33 14 27 )

twice moves the card from position 2 to position 3 and then to position 5; the card from
position 5 to position 9 and then to position 17; and so on. Therefore the shuffle

c2 = ( 2 3 5 9 17 33 14 27 ) ◦ ( 2 3 5 9 17 33 14 27 ) ,

when repeated, moves the card from position 2 to position 5 to position 17 to position
14 and then back to position 2; and that from position 3 to position 9 to position 33 to
position 27 and back to position 3. That is, c2 is a product of two cycles,

c2 = ( 2 5 17 14 ) ◦ ( 3 9 33 27 ) .

Doing the same thing for the rest of the outshuffle gives

out2 = ( 1 ) ◦ ( 2 5 17 14 ) ◦ ( 3 9 33 27 ) ◦ ( 4 13 49 40 )

◦ ( 7 25 46 28 ) ◦ · · · ◦ ( 18 ) ◦ ( 35 ) ◦ · · · ◦ ( 52 ) .

Thus the pack must be split into groups of sizes 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 4, 4, 1, each
group comprised of one suit only, and this is easy: just split each suit of 13 cards into
three groups of 4 and a singleton.
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Exercise. Give a general rule for the lengths of the cycles making up c2, if c is a cycle of
length l.
Hint. Try working it out for something like c = ( 3 14 15 9 26 ) first – you will find
that the answer is not quite the same as those we have already seen.

To conclude I would like to investigate a fact about shuffles which is not only of
interest in itself but has an unexpected and vitally important application. We already
know that the order in which we perform successive shuffles makes a difference to the
outcome. For example, doing an outshuffle followed by an inshuffle is not the same
as doing an inshuffle followed by an outshuffle. If we calculate the entire combined
shuffles in terms of cycles, we have

in ◦ out = ( 1 2 6 22 33 28 8 30 16 9 34 32 24 41 7 26 49 39 52

51 47 31 20 25 45 23 37 44 19 21 29 12 46 27 4 14 )

( 3 10 38 48 35 36 40 )( 5 18 17 13 50 43 15 )( 11 42 )

out ◦ in = ( 1 3 11 43 14 4 15 8 31 17 16 12 47 30 13 51 46 26 52

50 42 10 39 49 38 45 22 36 37 41 6 23 40 2 7 27 )

( 5 19 24 44 18 20 28 )( 9 35 33 25 48 34 29 )( 21 32 ) .

Although these shuffles are not the same, they do have a significant feature in common.
Can you see it before reading further?

Perhaps you noticed that both shuffles consist of cycles having the same lengths,
namely, one cycle of length 36, two of length 7 and one of length 2. This is related to
the important fact that cycle type is invariant under conjugation.

What does this mean? Well, the cycle type of a shuffle is simply a list of the number
of cycles of various lengths, as in the examples we have just seen; invariant means
that the cycle type of a conjugate of a shuffle is the same as that of the original shuffle.
Conjugatewill take a bit more explanation. First, it should be clear that if a pack of cards
is rearranged by any shuffle, then this shuffle can be undone, restoring the original
order of the cards. If the given shuffle is denoted by t, the shuffle which undoes t is
called the inverse of t and is denoted t−1. While inverting a complicated shuffle could be
awkward physically – a bit like unscrambling an egg – it is very simplemathematically,
especially if the shuffle is given as a composition of disjoint cycles. For example, the
inverse of the outshuffle is

out−1 = ( 1 )( 27 14 33 17 9 5 3 2 )( 28 40 46 49 25 13 7 4 )

( 29 15 8 30 41 21 11 6 )( 31 16 34 43 22 37 19 10 )

( 32 42 47 24 38 45 23 12 )( 35 18 )

( 36 44 48 50 51 26 39 20 )( 52 ) .

Exercise. Give a method of obtaining this from the cycle representation of out, and
explain why it works.

We can now explain what is meant by a conjugate of a shuffle s: it is a shuffle which
can be written as

t−1
◦ s ◦ t ,

8



where t is any shuffle at all3. That is, it is what happens when you perform any shuffle
you like, then the given shuffle s, then the inverse of the first shuffle. For example, one
of the conjugates of out is

in−1
◦ out ◦ in

= ( 1 28 29 31 35 43 7 40 )( 2 30 33 39 51 23 20 14 )

( 3 32 37 47 15 4 34 41 )( 5 36 45 11 48 17 8 42 )

( 6 38 49 19 12 50 21 16 )( 9 44 )

( 10 46 13 52 25 24 22 18 )( 26 )( 27 ) .

When we say that cycle type is invariant under conjugation, we mean that the cycle
type of any conjugate of a shuffle is the same as that of the original shuffle. In the
example we have just seen, in−1

◦ out ◦ in has six cycles of length 8, one of length 2 and
two of length 1, just the same as the outshuffle itself. To prove that s and t−1

◦ s ◦ t

always have the same cycle type, suppose that s contains a cycle

( a b c · · · z ) .

Remember that this means

s(a) = b , s(b) = c , . . . , s(z) = a .

Now consider the elements

t−1(a) , t−1(b) , t−1(c) , . . . , t−1(z) .

If we apply t−1
◦ s ◦ t to each of these we get

t−1(s(t(t−1(a)))) = t−1(s(a)) = t−1(b)

t−1(s(t(t−1(b)))) = t−1(s(b)) = t−1(c)

...
...

t−1(s(t(t−1(z)))) = t−1(s(z)) = t−1(a) ;

in other words,
( t−1(a) t−1(b) t−1(c) . . . t−1(z) )

is one of the cycles which make up t−1
◦ s ◦ t. That is, if s has a cycle of any length

whatsoever, t−1
◦s◦ t has a cycle of the same length, and this means that the cycle types

are the same.
This proves that cycle type is invariant under conjugation, but so what? Well, con-

jugates can be used to help with Rubik’s cube: see, for example, [2] or [3]. This is
not really very surprising, since the problem of solving Rubik’s cube is, in effect, the
same as undoing a kind of shuffle. A much more dramatic application is described by
T.W. Körner [4, page 351], who writes: “Few undergraduates would name [the result

3Some sources say t ◦ s ◦ t
−1. Explain why this doesn’t make any difference.
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just proved] as the dullest theorem of the year, but most would consider it a contender.
For the mathematicians who struggled with Enigma, it represented the first hint that
the plugboard might not be as strong as it seemed.”
In this passage, Körner is discussing the British codebreaking effort during World War
II. “Enigma” was the name given to the encryption machine used by the Nazi armed
forces, and the “plugboard” was a component introduced into later versions of the
machine, which made the codes vastly more difficult to break than those implemented
by the original Enigma. Although consideration of cycle types and conjugates did not
by itself enable the Allies to decipher enemy communications, it did, as Körner states,
provide “the first hint” that this might be possible. In the event, the codebreakers
at Bletchley Park managed to read many, though not all, of the coded messages they
received, and the information they gained was a major factor in the war against the
Nazis. It is not too much to suggest that if they had not succeeded, the history of the
twentieth century may have turned out very differently.

To me this is one of the eternally fascinating aspects of mathematics. On the one
hand we have card–shuffling: a pleasant pastime, of interest to many people, but not
something that one could ever describe as vitally important in human history; on the
other, a desperate struggle to avert the conquest of Europe, perhaps of other parts of
the world too, by a totalitarian regime. And yet the mathematics is the same. People
(students especially!) often complain about the abstract nature of mathematics: why
waste time proving all these results about nothing in particular? But it is precisely the
fact that mathematics is about “nothing in particular” that enables it to be applied in
studying all sorts of different things. Abstraction in mathematics is not an “optional
extra”, but an essential factor in our ability to solve a wide variety of real–world prob-
lems through mathematics.
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strongly recommended!

Searching the web will reveal many more references to these topics. However math-
ematicians usually refer to “permutations” rather than “shuffles”, so this is probably
the better search term to use.
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