
Parabola Volume 47, Issue 3 (2011)

2011 University of New South Wales School Mathematics

Competition 1

Junior Division – Problems and Solutions

Problem 1
A second-cousin prime n-tuple is defined as a set of n prime numbers {p, p+6, . . . p+

6(n− 1)} with common difference six. Each number in the set is a prime and consecu-
tive members of the set differ by six. For example 2011 is a member of a second-cousin
prime 2-tuple.

Show that there is one and only one second-cousin prime 5-tuple and there are no
second-cousin prime 6-tuples.

Solution 1
Clearly if p is not equal to five and is a member of a second-cousin prime n-tuple

then the last digit of pmust be one of one, three, seven or nine. Suppose it ends in one,
then the next member of the second-cousin prime n-tuple ends with a seven, the next
member a three, the next member a nine and then the next number that differs by six
ends in a five and is therefore non-prime. Thus there are no second-cousin prime n-
tuples with n > 4 if the first prime in the set is not equal to five. It remains to consider
a second-cousin prime n-tuple starting with p = 5. By construction the largest second-
cousin prime n-tuple is the second-cousin prime 5-tuple (5, 11, 17, 23, 29) and there are
no second-cousin prime 6-tuples.

Problem 2
In the figure below AC = c and the points E and F lie on the line DGwith DE = a

and FG = b. Show that if the area of the triangle ABC is equal to the area of the

rectangle ADGC then a+ b =
c

2
.

B

A

D G

C

E F
a b
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Solution 2
Consider a line perpendicular to AC that passes through B. LetH denote the point

where the line intersects AC and let I denote the point where the line intersects DG.

1The problems and solutions were compiled, created, refined with contributions from David Angell,
Chris Angstmann, Peter Brown, David Crocker, Bruce Henry (Director), David Hunt and Dmitriy Zanin.
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The area of the triangle ABC is given by

Area△ABC =
1

2
c|BH|,

and the area of the rectangle is given by

Area�ADGC = |IH|c

thus the areas are equal if

|BH| = 2|IH| ⇒ |BH|
|IH| = 2.

Note the relation

|BH| = |BI|+ |IH| ⇒ |BH|
|IH| =

|BI|
|IH| + 1 ⇒ |BI|

|IH| = 1.

Note the equal ratios
c− (a+ b)

c
=

|BI|
|BH| =

|BI|
2|IH| =

1

2

so that
a+ b =

c

2
.

Problem 3
Classic unrelated problems with flipping coins.

1. A sequence of zeros and ones is constructed by flipping a coin and assigning
zeros to heads and ones to tails. If the coin is unbiased then heads and tails
have the same probability of occurrence and the random sequence is said to be
uniformly random. If the coin is biased then heads and tails do not have the same
probability of occurrence. How can you construct a uniformly random sequence
of zeros and ones by flipping a coin with a small but unknown bias?

2. You flip one hundred coins on a table top with your eyes blindfolded and you are
reliably informed that thirteen landed heads up and the remainder landed heads
down. Supposing you remain blindfolded, how can you sort the coins into two
groups so that there are the same number showing heads up in each group? You
may turn coins over but you must not discard coins.

Solution 3

1. Flip the coin with the unknown bias to construct a sequence
S0, S1, S2, S3 . . . where Sj is one of heads or tails. Now construct the sequence of
pairs (S0, S1), (S2, S3), . . .. If (Sk, Sk+1) is
(heads, tails) then label it a zero and if it is (tails, heads) label it a one. Discard the
pairs (heads, heads) and (tails, tails). The resulting sequence of zeros and ones
will be uniformly random. This follows since if p is the probability of heads and
q is the probability of tails and the coin is biased then p2 6= q2 but pq = qp.
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2. Select thirteen coins at random and move (slide) them into a separate group.
There will then be n ≤ 13 coins heads up and 13 − n coins heads down in the
separated group and there will be 13− n coins heads up in the remaining group.
Now turn all coins over in the separated group to have 13− n coins heads up.

Problem 4
Six hundred and sixty-six students sit for a prestigious mathematics contest. It is

known that all of the students who sit the exam attend an all girls school and/or play
sport on the weekend, and/or play a musical instrument. One hundred and eleven
of the students attend an all girls school and two hundred and twenty-two attend an
all boys school. Four hundred and forty-four of the students play musical instruments
and five hundred and fifty-five of the students play sport on the weekend. Seventy-
seven of the students attend an all girls school and play sport on the weekend. Eighty-
eight of the students attend an all girls school and play a musical instrument. Three
hundred and thirty-three of the students play a musical instrument and play sport
on the weekend. Of the students who attend an all boys school thirty-three of them
do not both play sport on the weekend and play a musical instrument. How many
of the students attend a co-ed school, play sport on the weekend and play a musical
instrument?

Solution 4
LetN denote the total number of students who sat the competition, N(G) the num-

ber who attended an all girls school, N(B) the number who attend an all boys school,
N(C) the number who attend a co-ed school, N(M) the number who play a musical
instrument, and N(S) the number who play sport on the weekends. Let N(S ∩ M)
denote the number who play sport on the weekends and play a musical instrument
etc. The following relations hold

N = N(G) +N(M) +N(S)

−N(G ∩M)−N(G ∩ S)−N(M ∩ S)

+N(G ∩M ∩ S)

N(B) = N(B ∩M 6 ∩S) +N(B ∩ S 6 ∩M) +N(B ∩M ∩ S)

N(M ∩ S) = N(G ∩M ∩ S) +N(B ∩M ∩ S) +N(C ∩M ∩ S)

Using the numbers given we have

666 = 111 + 444 + 555− 88− 77− 333 +N(G ∩M ∩ S)

222 = 33 +N(B ∩M ∩ S)

333 = N(G ∩M ∩ S) +N(B ∩M ∩ S) +N(C ∩M ∩ S)

It is then a simplematter to solve for the number of students who attend a co-ed school,
play sport on the weekend and play a musical instrument, N(C ∩M ∩ S) = 90.

Problem 5
Show that if a, b, and c are positive integers with

a

b
<

√
c and c > 1 then

a+ bc

a+ b
>

√
c.
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Solution 5

a

b
<

√
c

⇒ a+ b

b
<

√
cb+ b

b

⇒ b

a+ b
>

b√
cb+ b

⇒ b

a+ b
>

(√
cb− b√
cb− b

)(

b√
cb+ b

)

=

√
c− 1

c− 1

⇒ bc− b

a+ b
>

√
c− 1

⇒ bc− b

a+ b
+

a+ b

a+ b
>

√
c

⇒ a+ bc

a+ b
>

√
c

Problem 6
A standard domino is a rectangular tile with a line dividing the rectangular face into

two equal-sized squares. Each square is decorated with a number of pips (including
zero pips – a blank end). A Double N set of dominos is composed of one each of
all possibilities with the number of pips on one square end less than or equal to the
number of pips on the other square end and the maximum number of pips on any
square end equal to N . The most common set of dominos is called the Double Six set.

1. It is well known that there are 28 dominos in a Double Six set. Show that the
number of dominos in a Double 48 set is a perfect square.

2. Prove that it is not possible to tile any square region without gaps or overlaps
using a complete Double N set of dominos.

3. A tri-omino is an equilateral triangular tile with lines dividing the triangular face
into four equilateral triangles decorated with blanks or pips. There are 1

6
(N +

3)(N + 2)(N + 1) tri-ominos in a Triple N set. Is it possible to tile a triangular
region without gaps or overlaps using a complete Triple N set of tri-ominos if
N > 1?

Solution 6

1. The number of dominos in a Double Six set is

(6 + 1) + (5 + 1) + (4 + 1) + . . . 1 = 28.
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The number of dominos in a Double N set is
N
∑

k=0

(k + 1) = N + 1 +
1

2
N(N + 1)

=
1

2
(N + 2)(N + 1)

Note that if N = 48 then

1

2
(N + 2)(N + 1) =

1

2
(50)(49) = (52)(72) = (5× 7)2

2. Let a denote the length of the short side of a domino. The total area of all faces in
a Double N set is given by

1

2
(N + 1)(N + 2)(2a)a = (N + 1)(N + 2)a2.

Without loss of generality suppose that along one side of the square region there
are m dominos with long side 2a and n dominos with short side a where m and
n are integers. The total area of the square region is then

(m(2a) + n(a))2 = (2m+ n)2a2 = L2a2

where L = 2m+ n is an integer. Thus the square region can only be tiled without
overlaps and gaps if there exists an integer L for which

L2 = (N + 1)(N + 2)

but the product of two consecutive integers cannot be a perfect square. (This is
easy to see by inspection since there are no integers L for which (N + 1) < L <

(N + 2)).

3. It is easy to see that M tri-ominos can tile a triangular region without gaps or
overlaps if M is a perfect square. It is easy to verify that M2 = 1

6
(N + 3)(N +

2)(N + 1) has the trivial solution N = 1,M = 2. More generally note that in part
(i) we have shown that

1

2
(48 + 1)(48 + 2) = 352

or equivalently
1

2
(47 + 2)(47 + 3) = 352.

But also note that
1

3
(47 + 1) = 42

and then
1

6
(47 + 1)(47 + 2)(47 + 3) = 42 × 352 = 1402,

so that it is possible to tile a triangular region without gaps or overlaps with a
Triple 47 set of 1402 = 19, 600 tri-ominos. Indeed this is the only TripleN set with
N > 1 that can tile a triangular region, but the proof is non-trivial.
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Senior Division – Problems and Solutions

Problem 1
A standard domino is a rectangular tile with a line dividing the rectangular face into

two equal-sized squares. Each square is decorated with a number of pips (including
zero pips – a blank end). A Double N set of dominos is composed of one each of
all possibilities with the number of pips on one square end less than or equal to the
number of pips on the other square end and the maximum number of pips on any
square end equal to N . The most common set of dominos is called the Double Six set.

1. It is well known that there are 28 dominos in a Double Six set. Show that the
number of dominos in a Double 48 set is a perfect square.

2. Prove that it is not possible to tile any square region without gaps or overlaps
using a complete Double N set of dominos.

3. A tri-omino is an equilateral triangular tile with lines dividing the triangular face
into four equilateral triangles decorated with blanks or pips. There are 1

6
(N +

3)(N + 2)(N + 1) tri-ominos in a Triple N set. Is it possible to tile a triangular
region without gaps or overlaps using a complete Triple N set of tri-ominos if
N > 1?

Solution 1

1. The number of dominos in a Double Six set is

(6 + 1) + (5 + 1) + (4 + 1) + . . . 1 = 28.

The number of dominos in a Double N set is

N
∑

k=0

(k + 1) = N + 1 +
1

2
N(N + 1)

=
1

2
(N + 2)(N + 1)

Note that if N = 48 then

1

2
(N + 2)(N + 1) =

1

2
(50)(49) = (52)(72) = (5× 7)2

2. Let a denote the length of the short side of a domino. The total area of all faces in
a Double N set is given by

1

2
(N + 1)(N + 2)(2a)a = (N + 1)(N + 2)a2.
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Without loss of generality suppose that along one side of the square region there
are m dominos with long side 2a and n dominos with short side a where m and
n are integers. The total area of the square region is then

(m(2a) + n(a))2 = (2m+ n)2a2 = L2a2

where L = 2m+ n is an integer. Thus the square region can only be tiled without
overlaps and gaps if there exists an integer L for which

L2 = (N + 1)(N + 2)

but the product of two consecutive integers cannot be a perfect square. (This is
easy to see by inspection since there are no integers L for which (N + 1) < L <

(N + 2)).

3. It is easy to see that M tri-ominos can tile a triangular region without gaps or
overlaps if M is a perfect square. It is easy to verify that M2 = 1

6
(N + 3)(N +

2)(N + 1) has the trivial solution N = 1,M = 2. More generally note that in part
(i) we have shown that

1

2
(48 + 1)(48 + 2) = 352

or equivalently
1

2
(47 + 2)(47 + 3) = 352.

But also note that
1

3
(47 + 1) = 42

and then
1

6
(47 + 1)(47 + 2)(47 + 3) = 42 × 352 = 1402,

so that it is possible to tile a triangular region without gaps or overlaps with a
Triple 47 set of 1402 = 19, 600 tri-ominos. Indeed this is the only TripleN set with
N > 1 that can tile a triangular region, but the proof is non-trivial.

Problem 2
In Australian elections, the two-party preferred vote assigns a vote to either the

Australian Labor Party (ALP) or the Liberal National Coalition (Coalition). A polling
company notices the following trend in the run up to an election. On a two-party
preferred basis, in any one month period, 30% of the leading party’s vote shifts to the
opposing party and 20% of the opposing party’s vote shifts to the leading party. Five
months before the election the ALP has 55% of the total vote and the Coalition has 45%
of the vote on a two-party preferred basis.

1. If the trend continues who would win the election and what percentage of the
vote would they have?
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2. Assuming the trend continues after the election what is the maximum vote, to
the nearest percent, that the losing party could attain in the next four year term
of government?

Solution 2
LetA(n) denote the proportion of the vote for the ALP at time n and letB(n) denote

the proportion of the vote for the Coalition at time nwith one month corresponding to
the unit of time.

The vote for the ALP in month n+ 1 will be

A(n+ 1) =







A(n)− 30

100
A(n) + 20

100
B(n), A(n) > B(n)

A(n)− 20

100
A(n) + 30

100
B(n), A(n) < B(n)

The vote for the Coalition in month n+ 1 will be

B(n+ 1) =







B(n)− 30

100
B(n) + 20

100
A(n), A(n) < B(n)

B(n)− 20

100
B(n) + 30

100
A(n), B(n) < A(n)

At all times we haveA(n)+B(n) = 1 so that it is sufficient to consider the dynamics
of the vote for one party, the ALP say, in which case the governing equation simplifies
to

A(n+ 1) =







20

100
+ 50

100
A(n), A(n) > 50

100

30

100
+ 50

100
A(n), A(n) < 50

100

1. It is a simplematter to start withA(0) = 0.55 and then calculateA(1) = 0.475, A(2) =
0.5375, A(3) = 0.46875, A(4) = 0.534375, A(5) = 0.4671875 so that the ALP would
have less than half the vote at the time of the election.

2. Note that the proportion of the vote to the ALP quickly becomes cyclic so that if
A(k) < 0.5 then A(k + 1) > 0.5 and vice versa. Thus we can write

A(k + 2) =
20

100
+

50

100
A(k + 1) =

20

100
+

50

100

(

30

100
+

50

100
A(k)

)

.

After a long time we expect A(k + 2) = A(k) = X with solution X =
7

15
. Thus

after long times we anticipate the vote for any one party will alternate from one

month to the next between X =
7

15
and 1 −X =

8

15
. The maximum vote for the

losing party if the trend continues is thus
8

15
or 53.3% of the vote.

Problem 3
Two friends pass time playing a simple game with standard dice; small cubes with

the faces displaying pips that number from one to six.
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They start by rolling a single die in turns until one of the friends rolls a six. They
then roll a pair of dice in turns until the total on the faces is seven. The first to roll
seven is declared the winner.

1. What is the probability that the person who rolled the single die first will roll the
first six?

2. If the first person to roll a six has the first turn in rolling the pair of dice what is
the probability that the person who rolled the single die first will win the game?

Solution 3

1. The probability that the first player rolls the first six on their first roll is
1

6
, the

probability they do not roll a six on the first roll (and nor does their opponent)

but they do on their second roll is

(

5

6

)2
1

6
, the probability that they do not roll a

six on their first n rolls (and nor does their opponent) but they do on the (n+1)th

roll is

(

5

6

)2n
1

6
. The probability that the first player rolls the first six is thus

p =
∞
∑

n=0

(

5

6

)2n
1

6
.

Recall the geometric series
∞
∑

n=0

an =
1

1− a

and then the player who rolled first has the probability of

p =

(

1

1−
(

5

6

)2

)

1

6
=

6

11
.

As an aside, the probability that the player who rolls second is the player who
rolls the first six is thus

q =
5

11
.

2. There are two ways that the person who rolls the first single die can win the
game: (i) if they roll the first six and then roll the first seven, or (ii) they do not
roll the first six but they roll the first seven.
Now consider the probability that the first player to roll a pair is the first player
to roll a seven. With a pair of dice there are six ways for the faces to add to seven;
a one and a six (or a six and a one), a two and a five (or a five and a two), a three
and a four (or a four and a three), out of six times six possible outcomes. The

probability of rolling a seven is thus =
6

36
=

1

6
and the probability of not rolling
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a seven is =
5

6
. Thus similar to above the probability that the first player to roll

a pair is the first player to roll a seven is
6

11
and the probability that the second

player to roll a pair is the first to roll a seven is
5

11
.

The probability that the person who rolled the single die first will win the game
is thus the probability that they rolled the first six and then (being the first to roll
a pair) they rolled the first seven plus the probability that they did not roll the
first six and then (being the second to roll a pair) they rolled the first seven:

P =
6

11
× 6

11
+

5

11
× 5

11
=

36 + 25

121
=

61

121
.

Problem 4
Find the product of all distinct numbers of the form x

1

x where x = 2k and k is a
non-negative integer.

Solution 4
Consider

ak = (2k)
1

2k = 2
k

2k

then we wish to find the product of all distinct ak where k is a non-negative integer.
Note that a0 = 1, a1 =

√
2, a2 =

√
2 and ak+1 < ak for all k > 1 so that the desired result

is

P =
1√
2

∞
∏

k=0

ak

=
1√
2

∞
∏

k=0

2
k

2k

=
1√
2
2
∑

∞

k=0

k

2k

We now consider the sum

S =
∞
∑

k=0

k

2k

=
1

2
+

2

4
+

3

8
+

4

16
+

5

32
+ · · ·

=
1

2
+

1

2

(

2

2
+

3

4
+

4

8
+

5

16
+ · · ·

)

=
1

2
+

1

2

(

1 + 1

2
+

1 + 2

4
+

1 + 3

8
+

1 + 4

16
+ · · ·

)

=
1

2
+

1

2

(

1

2
+

1

4
+

1

8
+

1

16
+ · · ·

)

+
1

2

(

1

2
+

2

4
+

3

8
+

4

16
+ · · ·

)

=
1

2
+

1

2

(

1

2
+

1

4
+

1

8
+

1

16
+ · · ·

)

+
1

2
S
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Hence

S = 1 +
1

2
+

1

4
+

1

8
+

1

16
+ · · ·

But this is the standard geometric series

S =
∞
∑

k=0

(

1

2

)k

=
1

1− 1

2

= 2.

We now have

P =
1√
2
2S =

4√
2
= 2

√
2.

Problem 5
Consider the triangle shown below with vertices A, B, C where point D lies on the

side AB, point E lies on the side BC and point F lies on the side AC, and the three
lines AE, BF and CD intersect at a common point G.

B

A C

D
E

F

G

Show that
Area(△CGF )

Area(△AGF )
=

Area(△BGC)

Area(△BGA)

Solution 5
B

A C

D
E

F

G

IH

From the altitudes GI and BH shown on the figure we first deduce

Area(△AGF ) =
1

2
|AF ||GI|

Area(△CGF ) =
1

2
|CF ||GI|

Area(△ABF ) =
1

2
|AF ||BH|

Area(△CBF ) =
1

2
|CF ||BH|

11



Thus
CF

AF
=

Area(△CGF )

Area(△AGF )
=

Area(△CBF )

Area(△ABF )

But
Area(△CBF )

Area(△ABF )
=

Area(△CGF ) +Area(△BGC)

Area(△AGF ) +Area(△BGA)

and hence
Area(△CGF )

Area(△AGF )
=

Area(△CGF ) +Area(△BGC)

Area(△AGF ) +Area(△BGA)
.

The result
Area(△CGF )

Area(△AGF )
=

Area(△BGC)

Area(△BGA)

now immediately follows.
Problem 6
Prove that

2× 2011× (20113 + 1)(20103 + 1) · · · (23 + 1) >

3× 2010× (20113 − 1)(20103 − 1) · · · (23 − 1)

Solution 6
The inequality can be re-written as

2× 2011

3× 2010
>

2011
∏

j=2

j3 − 1

j3 + 1
.

For abbreviation, we define
T (j) = j2 + j + 1,

and we see note that
T (j − 1) = j2 − j + 1.
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The right-hand side of the above inequality then reads

2011
∏

j=2

j3 − 1

j3 + 1
=

2011
∏

j=1

(j − 1)T (j)

(j + 1)T (j − 1)

=
2010!

2012!
× 2T (2011)

T (1)

=
2

3
× 20112 + 2011 + 1

2011× 2012

=
2

3
× 2011× 2012 + 1

2011× 2012

=
2

3
×
(

1 +
1

2011× 2012

)

<
2

3
×
(

1 +
1

2010

)

=
2

3
× 2011

2010
.
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