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Integrating expressions containing inverse functions
Seán M. Stewart1

The problem of integrating simple expressions containing inverse functions relies on
the well-known method of integration by parts. For example, consider the integral

∫

ln x dx.

Since the natural logarithmic function is the inverse of the exponential function, the
standard approach proceeds by recognising that the unit function f(x) = 1 can always
be written as a product with the inverse function before the method of integration by
parts is employed. In the case of the example given above, integration by parts leads
to the well-known result of

∫

ln x dx =

∫

1 · ln x dx = x ln x− x+ C.

For convenience, in the remainder of the paper we will drop the arbitrary constant of
integration appearing in all indefinite integrals.

As a second example, consider the integral
∫

sin−1 x dx.

Here the integrand of the integral consists of the inverse sine function and is the inverse
of the well-known sine function. Again, using integration by parts for its evaluation
we have

∫

sin−1 x dx = x sin−1 x−

∫

x
√

1− x2
dx.

The integral appearing to the far right can be evaluated using the substitution u =
1− x2. Here xdx = −du/2, so that

∫

sin−1 x dx = x sin−1 x+
1

2

∫

du
√
u

= x sin−1 x+
√

u

= x sin−1 x+
√

1− x2.

Evaluation of the integrals given in the above two examples using integration by
parts is widely known and is nothing new in itself. In fact, these examples are typical
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of the type a pupil studying emMathematics Extension 2 in NSWwould be expected to
know how to do and it is the above method they would be expected to use. As a tech-
nique for integrating relatively simple expressions containing inverse functions this
“standard” method is more than adequate. However, for the integration of more com-
plicated expressions containing inverse functions use of the standard method proves
difficult. As an example, consider the evaluation of

∫

(sin−1 x)3dx. Such integrals can
however be evaluated in a relatively straightforward manner using a little known re-
sult I am going to call Parker’s method.

Let us begin by considering, in simplest form, the evaluation of integrals of the form
∫

f−1(x) dx. If we use the substitution y = f−1(x), then x = f(y) so that dx = f ′(y)dy.
Thus

∫

f−1(x) dx =

∫

yf ′(y)dy = yf(y)−

∫

f(y) dy,

upon integrating by parts.
The above technique allows for a simpler evaluation of integrals containing a single

inverse function compared to the standard method. As an example, let us consider the
evaluation of

∫

sin−1(x) dx using this alternative technique. Firstly, if we let

y = f−1(x) = sin−1(x),

so that
x = f(y) = sin(y),

on using
∫

f−1(x) dx = yf(y)−

∫

f(y) dy,

substituting gives
∫

sin−1(x) dx = y sin(y)−

∫

sin(y) dy

= y sin(y) + cos(y)

= x sin−1(x) +
√

1− x2,

as expected. Here use of a right-angled triangle which has y as one of its acute angles,
so that sin(y) = x, has been used in order to write cos(y) in terms of x. Whilst this alter-
native method may not seem that much simpler compared to the standard method it is
now only a simple step to generalize the above technique to more complicated expres-
sions containing inverse functions. As we shall see, this is where the real usefulness of
the technique lay over that of the standard approach.

In generalizing the procedure, let us consider the evaluation of integrals of the form
∫

G(x, f−1(x)) dx. If we again use the substitution of y = f−1(x) so that x = f(y), then
dx = f ′(y)dy. Thus

∫

G(x, f−1(x)) dx =

∫

G(f(y), y)f ′(y) dy

= G(f(y), y)f(y)−

∫

f(y)
d

dy
G(f(y), y) dy (0.1)
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upon integrating by parts.
Initially the integral appearing to the right of equation (0.1) may not seem any sim-

pler than the original integral. However, as we shall shortly see, in many instances
equation (0.1) does indeed represent a significant simplification in the evaluation of in-
tegrals containingmore complicated inverse function expressions. The technique is not
new. It dates back some 50 years to Parker [1], though it does not appear to be widely
known. It is not part of the standard calculus curriculum either at the secondary or
tertiary level and I am yet to find the technique presented in any calculus text. This is
surprising considering how simple the technique turns out to be.

As our first example using Parker’s method, let us consider the evaluation of the
integral

∫

sin−1(x)

x2
dx.

By writing

G(x, f−1(x)) =
sin−1(x)

x2
,

such that
y = f−1(x) = sin−1(x) and x = f(y) = sin(y),

then
G(f(y), y) =

y

sin2(y)
.

Upon applying equation (0.1) we have

∫

sin−1(x)

x2
dx =

y

sin2(y)
sin(y)−

∫

sin(y)
d

dy

(

y

sin2(y)

)

dy

=
y

sin(y)
−

∫

sin(y)

(

sin2(y)− 2y sin(y) cos(y)

sin4(y)

)

dy

=
y

sin(y)
−

∫

sin2(y)− 2y sin(y) cos(y)

sin3(y)
dy

=
y

sin(y)
−

∫

cosec(y) dy + 2

∫

y cos(y)

sin2(y)
dy.

The integral of the cosecant is well known. The result is
∫

cosec(y) dy = − ln(cosec(y) + cot(y)) = − ln

(

1 + cos(y)

sin(y)

)

.

In the second integral, if we put x = sin(y), so dx = cos(y)dy, we see that

∫

y cos(y)

sin2(y)
dy =

∫

sin−1(x)

x2
dx.

Thus
∫

sin−1(x)

x2
dx =

y

sin(y)
+ ln

(

1 + cos(y)

sin(y)

)

+ 2

∫

sin−1(x)

x2
dx.

3



Simplifying yields

∫

sin−1(x)

x2
dx = −

y

sin(y)
− ln

(

1 + cos(y)

sin(y)

)

,

or in terms of x

∫

sin−1(x)

x2
dx = −

sin−1(x)

x
− ln

(

1 +
√

1− x2

x

)

.

As a second example using Parker’s method let us consider the evaluation of the
integral

∫

(sin−1(x))3 dx.

Again, by writing
G(x, f−1(x)) = (sin−1(x))3,

such that
y = f−1(x) = sin−1(x) and x = f(y) = sin(y),

then
G(f(y), y) = y3.

On applying equation (0.1) we have

∫

(sin−1(x))3 dx = y3 sin(y)−

∫

sin(y)
d

dy
(y3)dy

= y3 sin(y)− 3

∫

y2 sin(y)dy

= y3 sin(y) + 3y2 cos(y)− 6

∫

y cos(y) dy

= y3 sin(y) + 3y2 cos(y)− 6y sin(y) + 6

∫

sin(y) dy

= y3 sin(y) + 3y2 cos(y)− 6y sin(y)− 6 cos(y).

Here repeated integration by parts has been used. Finally, writing this in terms of xwe
have

∫

(sin−1(x))3 dx = x(sin−1(x))3 + 3(sin−1(x))2
√

1− x2

−6x sin−1(x)− 6
√

1− x2.

As further practice in the application of Parker’s method you may like to use it in
order to show the following:

(i)

∫

(cos−1(x))2dx = x(cos−1(x))2 − 2
√

1− x2 cos−1(x)− 2x
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(ii)

∫

x2 tan−1(x) dx =
x3 tan−1(x)

3
+

ln(x2 + 1)

6
−

x2

6

(iii)

∫

x2 tan−1(x)

1 + x2
dx = x tan−1(x)−

1

2
ln(1 + x2)−

1

2
[tan−1(x)]2

While the technique embodied in equation (0.1) for integrating more complicated
expressions containing inverse functions is no doubt a powerful one, it is not without
its caveats. As is the case with any technique of integration, deciding on when to use it
is a skill in itself. In certain particular instances it turns out to be far easier to integrate
such expressions directly by parts after the substitution of y = f−1(x) and any resulting
algebraic simplifications are made. As an example, consider the integral

∫

sin−1(x)
√

(1− x2)3
dx.

In this instance using Parker’s method leads one into an almighty mess! Try it for
yourself and see. If however one were to use the substitution of y = f−1(x) = sin−1(x),
then x = sin y so that dx = cos y dy. Upon substituting and simplifying the integrand,
before integrating directly by parts, we have

∫

sin−1(x)
√

(1− x2)3
dx =

∫

y cos y

cos3 y
dy

=

∫

y sec2 y dy

= y tan y −

∫

tan y dy

= y tan y + ln(cos y)

=
x sin−1(x)
√

1− x2
+

1

2
ln(1− x2).
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