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Wilkinson Polynomials
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Introduction
This article is about a family of polynomials introduced by James H. Wilkinson

some five decades ago, which have the peculiar property that some of their zeros are
extremely sensitive to small changes in the values of one or more of the coefficients.

Definition of the Wilkinson polynomials
If n is a non-negative integer, we define the Wilkinson polynomials W (x, n) by

W (x, 0) = 1

W (x, 1) = x− 1

W (x, 2) = (x− 2)(x− 1)

W (x, 3) = (x− 3)(x− 2)(x− 1)

and so on to give

W (x, n) = (x− n)W (x, n− 1) for n > 0 .

It is clear from this that W (x, n) is a polynomial in x of degree n and that its zeros
are at x = 1, . . . , n. For example,

W (x, 7) = x7 − 28x6 + 322x5 − 1960x4 + 6769x3 − 13132x2 + 13068x− 5040

has zeros at x = 1, 2, 3, 4, 6, 5, 7.
The special case W (x, 20) = x20 − 210x19 + · · ·+ 2432902008176640000 is sometimes

called the Wilkinson polynomial or Wilkinson’s polynomial and denoted by w(x). Per-
haps of some historical interest is that the form originally used by Wilkinson was to
write the terms as (x+ n), rather than as (x− n) in his definition, but he later switched
to the form used here.

Small changes to the Wilkinson polynomials
It had long been recognised that, if a polynomial had a multiple zero, a small change

in one of the coefficients could result in a much larger change to these zeros. For ex-
ample, consider the polynomial

P (x) = x2 − 2x+ 1 = (x− 1)2
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which has a double zero at x = 1. Let us now consider

Q(x) = P (x)− a2

where a is a small number. The zeros of Q(x) are clearly at x = 1 + a and x = 1 − a.
For example, if a = 0.1 a change in the constant coefficient of the polynomial from 1.0
to 0.99 has resulted in a change of one of the zeros from 1.0 to 1.1 and a change in the
other zero from 1.0 to 0.9. Similar things can happen if two zeros are close together and
a small change is made to one or more of the coefficients of the polynomial. What had
not been appreciated fully until the advent of the Wilkinson polynomials is that small
changes to the coefficients of a polynomial whose zeros are widely separated can also
result in large changes to the zeros.

To illustrate this let us modify our Wilkinson polynomials by changing the coeffi-
cient of the second-highest power of x by a small amount. Thus we consider

M(x, n, a) = W (x, n) + axn−1

where a is a constant. ClearlyM(x, n, 0) = W (x, n).
Table 1 shows the zeros ofM(x, 7, a) for various values of a.

a = 0 a = 0.0001 a = 0.001 a = −0.001
1 0.999999861 0.99999861 1.000001389
2 2.000053346 2.000534556 1.999467881
3 2.998487170 2.985372554 3.015825243
4 4.011578940 4.145004394 3.900810612
5 4.968043422 4.696557875 5.475652121 + 0.2313509641i
6 6.038523465 6.433991596 5.475652121− 0.2313509641i
7 6.983213796 6.737540414 7.133590634

Table 1: The zeros ofM(x, 7, a) for various values of a.

where i =
√
−1. In this table, only the first few decimal places have been shown. What

is clear is that very small changes in the coefficient of x6 have resulted in much larger
changes to the zeros, particularly to the larger ones. Indeed, some of the zeros have
become complex, involving i =

√
−1. There is nothing scary about this. For example,

the polynomial x2 − 1 has its zeros at x = ±1 whereas x2 + 1 has its zeros at x = ±i.
If you have not encountered complex numbers yet, you will meet them later in your
studies. They are used in many areas of science and engineering and are also discussed
in a Wikipedia article referenced at the end of this article.

Why is this happening?
The original polynomial W (x, 7) takes the value zero at x = 1, 2, 3, 5, 6, 7. Because it

is a continuous function this means that W (x, 7) is small in the neighbourhood of each
of these points. When the additional term ax6 is added the new polynomialM(x, 7, a)
is not exactly zero at the zeros of the original polynomial. Thus the zeros are shifted.
Now ax6 grows very rapidly with x from a at x = 1 to 117649 a at x = 7. Thus, for
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Figure 1: The upper curve is the Wilkinson polynomial W (x, 7). The lower curve
is M(x, 7,−0.0015). The middle curve is the critical case M(x, 7,−0.0008016332031)
which has a double zero.

small values of a the zeros at x = 1 and x = 2 are altered only slightly whereas the
higher ones experience greater changes. For example, if we start at a = 0 and then
let a become more and more negative, we find that the zeros at 5 and 6 start to move
towards one another. At the critical value of approximately a = −0.0008016332031 the
two zeros coalesce to form a double zero at approximately x = 5.479661255. Beyond
there, the curve no longer cuts the x-axis in this region and these two zeros become
complex as we have seen. This behaviour is demonstrated in Figure 1.

Similar things happen for positive values of a. For example, zeros at 6 and 7 co-
alesce to a double zero at approximately x = 6.593795626 when a = 0.001120388705
approximately. Further increases in the magnitude of a lead to more zeros becoming
complex.

Altering the coefficient of x5 rather than x6 leads to similar but less rapid changes
because ax5 grows more slowly than ax6 as x increases. For Wilkinson polynomials of
higher order, the changes are even more dramatic. The Wikipedia article mentioned
below discusses W (x, 20).

Why is this important?
A common circumstance in the practical application of mathematics to areas like

science and engineering is to find the zeros of a function. You will all be familiar with
the formula for finding the roots of a quadratic equation, i.e. the zeros of a polynomial
of degree 2. There is a more complicated expression for the zeros of a polynomial of
degree 3 and an horrendously complicated expression for the zeros of a polynomial of
degree 4. It can be shown that there is no expression for the zeros of a general polyno-
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mial of degree 5 or greater. For these, numerical methods must be used as they must
to find the solutions of an equation like cosx − x = 0. You may be familiar with New-
ton’s method (sometimes called the Newton-Raphson method) for finding a solution of the
equation f(x) = 0. This starts from some initial estimate x0 of the zero and constructs
the tangent to the curve y = f(x) at the point (x0, f(x0)) and then finds where that tan-
gent line cuts the x-axis. This is taken as the next estimate x1 of the zero. The process
is then repeated using x1 instead of x0 to give x2, and so on. This therefore generates a
sequence of numbers x0, x1, x2, . . . xn, . . . , which will sometimes approach the true but
unknown zero. Indeed, there is a whole branch of mathematics known as numerical
analysis devoted to devising and investigating methods which can be implemented on
computers for finding approximate numerical solutions to a whole range of problems.
One property of Newton’s method in which we would be interested is to determine
the circumstances under which it will converge to the zero we want. Loosely speak-
ing, this will happen if x0 is sufficiently close to the desired zero. For polynomials,
there are specialised methods such as Graeffe’s method and Bairstow’s method which can
be used.

We must bear in mind that computers and calculators are finite devices and cannot
always represent real numbers exactly because they have mantissas of finite length.
The inner workings of most computers use binary (base 2) or octal (base 8) or hexadec-
imal (base 16) arithmetic but the point can be made by using the more familiar decimal
(base 10) representation of numbers. Suppose our computer has a mantissa of ten dig-
its. A number such as 1/3 would be represented in such a machine as 0.3333333333
which is not equal to 1/3. Thus, any computer may not be able to hold the coefficients
of a polynomial exactly and so we would be finding the zero of a polynomial slightly
different from the one we intended. As the Wilkinson polynomial shows, some of the
zeros of these two slightly different polynomials may be very different and so lead us
to make false conclusions if, for example, we needed to know them for some engineer-
ing or scientific purpose.

Further Reading
As you might imagine, there is a large amount of material on the web about the

matters discussed in this article. You might like to start at

http://en.wikipedia.org/wiki/Wilkinson’s_polynomial

and follow some of the links there. For a short biography of James Wilkinson himself,
you could start at

http://en.wikipedia.org/wiki/James_H._Wilkinson

For Graeffe’s method, start at

http://en.wikipedia.org/wiki/Graeffe’s_method

and for Bairstow’s method try

http://en.wikipedia.org/wiki/Bairstow’s_method
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Newton’s method is discussed in

http://en.wikipedia.org/wiki/Newton’s_method

while complex numbers are discussed in

http://en.wikipedia.org/wiki/Complex_number

These web addresses are all correct at the time of writing but could possibly change
over time.
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