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Solutions 1391–1400
Q1391 Jack looked at the clock next to his front door as he left home one afternoon to
visit Jill and watch a TV programme. Arriving exactly as the programme started, he set
out for home again when it finished one hour later. As he did so he looked at her clock
and noticed that it showed the same time as his had done when he left home. Puzzling
over how Jill’s clock could be so wrong, Jack travelled home at half the speed of his
earlier journey. When he arrived home he saw from his clock that the whole expedition
had taken two hours and fifteen minutes. He still hadn’t worked out about Jill’s clock
and so he called her up on the phone. Jill explained that her clock was actually correct
(as was Jack’s), but it was an “anticlockwise clock” on which the hands travel in the
opposite direction from usual. Jack had been in such a hurry to leave that he hadn’t
noticed the numbers on the clock face going the “wrong” way around the dial. At what
time did Jack leave home?

SOLUTION Jack’s travel time home was twice that of his outward journey; the total
travel time, plus the 60minutes’ visit, adds up to 2 hours 15minutes. So Jack’s outward
travel time was 25 minutes, and the time when he looked at Jill’s clock was 1 hour 25
minutes after looking at his own. Since it then appeared to show the time at which Jack
left, double this time plus the 1 hour 25 minute stay must add up to 12 hours (if you
have trouble seeing why, draw pictures of the two clocks). So the time at which Jack
left was 5 : 17 : 30.

Comment. The times involved could have added up to 24 hours instead of 12, in
which case Jack’s departure time would have been 11 : 17 : 30. However this does not
fit in with the information that he “left home one afternoon”.

Q1392 Find all real numbers x which satisfy the equation

⌊x⌋ − {2x}+ ⌈3x⌉ = 5 ,

where we write ⌊x⌋ for x rounded to the integer below, ⌈x⌉ for x rounded to the integer
above, and {x} for x rounded to the nearest integer, with halves rounding upwards.

SOLUTION Following the solution to problem 1384, let a = ⌊x⌋ and b = {2x} and
c = ⌈3x⌉. Then a, b, c are integers and we can write

x = a+ α , 2x = b+ β , 3x = c− γ (1)

where
0 ≤ α < 1 , −1

2
≤ β < 1

2
, 0 ≤ γ < 1 . (2)

We have immediately
a− b+ c = 5 ,
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and from (1) we obtain

2a+ 2α = b+ β and 3a+ 3α = c− γ . (3)

Solving the last three equations to find a, b, c in terms of α, β, γ is easy (exercise!) and
gives the results

a = 1

2
(5− α− β − γ) , b = 5 + α− 2β − γ , c = 1

2
(15 + 3α− 3β − γ) .

But now the inequalities (2) imply

11

4
< a ≤ 23

4
, 3 < b < 7 , 61

4
< c < 93

4
,

and since a, b, c are integers we have

a = 2 , b = 4 or 5 or 6 , c = 7 or 8 or 9

with c = b+ 3. Returning to equations (3) and solving for α we obtain

α = 1

2
(b− 2a+ β) and α = 1

3
(c− 3a− γ) ,

and using one last time the inequalities (2) together with the known possibilities for
a, b, c gives restrictions on the value of α. Not forgetting that we already know 0 ≤ α <
1, there are three possibilities:

• a = 2, b = 4, c = 7, so −1

4
≤ α < 1

4
and 0 < α ≤ 1

3
, so

0 < α < 1

4
;

• a = 2, b = 5, c = 8, so 1

4
≤ α < 3

4
and 1

3
< α ≤ 2

3
, so

1

3
< α ≤ 2

3
;

• a = 2, b = 6, c = 9, so 3

4
≤ α < 5

4
and 2

3
< α ≤ 1, so

3

4
≤ α < 1 .

Since x = 2 + α, the solutions of the equation must satisfy

2 < x < 21

4
or 21

3
< x ≤ 22

3
or 23

4
≤ x < 3 .

There are other conditions which could potentially restrict the solutions still further, so
it is necessary to check that all these values really work; however this is not difficult,
and all of these x values are in fact solutions.
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Q1393 The sequence of numbers a(1), a(2), . . . in the solution to problem 1385 (previ-
ous issue) has the properties a(1) = 5, a(2) = 26 and

a(n) = 6a(n− 1)− 4a(n− 2) for n ≥ 3 .

Use the method of the article in the previous issue to find a formula for a(n) directly in
terms of n, and hence check the answer to problem 1385.

SOLUTION As in the article, we wish to rewrite the recurrence in the form

[a(n)− ra(n− 1)] = s[a(n− 1)− ra(n− 2)] , (1)

that is,
a(n) = (r + s)a(n− 1)− rsa(n− 2) .

Therefore we need r + s = 6, rs = 4; r and s are roots of the equation x2 − 6x + 4 = 0,
and we may take

r = 3 +
√
5 , s = 3−

√
5 .

Equation (1) now gives

a(n)− ra(n− 1) = s [a(n− 1)− ra(n− 2)]

= s2 [a(n− 2)− ra(n− 3)]

= · · ·
= sn−2 [a(2)− ra(1)]

and hence

a(n)− ra(n− 1) = sn−2 [a(2)− ra(1)]

ra(n− 1)− r2a(n− 2) = rsn−3 [a(2)− ra(1)]

· · · = · · ·
rn−2a(2)− rn−1a(1) = rn−2 [a(2)− ra(1)] .

Adding all of these equations, most of the left-hand side disappears, and we add up a
geometric series on the right-hand side (being careful with the number of terms):

a(n)− rn−1a(1) = [a(2)− ra(1)] sn−2
(r/s)n−1 − 1

(r/s)− 1

= [a(2)− ra(1)]
rn−1 − sn−1

r − s
.

Solving for a(n) and collecting terms, then substituting the known values of r, s, a(1)
and a(2), yields

a(n) =
a(2)− sa(1)

r − s
rn−1 − a(2)− ra(1)

r − s
sn−1

=
11 + 5

√
5

2
√
5

rn−1 − 11− 5
√
5

2
√
5

sn−1

=
(1

2
+

1√
5

)

(

3 +
√
5
)n

+
(1

2
− 1√

5

)

(

3−
√
5
)n

.
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Substituting n = 10 and doing lots of algebra (or using a computer algebra system)
gives a(10) = 14 672 384, confirming the result of solution 1385.

NOW TRY problem 1401.

Q1394 Consider the problem of covering a hallway of width 3 metres with carpet
tiles, if the tiles available are 2metre by 2metre squares and 2metre by 1metre rectan-
gles. (See the article in the previous issue for a similar problem.)

(a) How many ways are there of doing this if the length (in metres) of the hallway is
odd?

(b) Let a(n) be the number of ways of carpeting a 3 metre by 2n metre hallway. Find
a recurrence relation for a(n) and solve it to obtain a direct formula for a(n).

SOLUTION For the first part we note that the given tiles, in any combination, will
always cover an even area. Therefore there is no way to carpet the hallway if it has
odd length. For a hallway of length 2n metres there are five ways, as shown in the
diagrams, to cover the end of the hallway.

Now let a(n) and b(n) be the number of ways to carpet regions with the shapes and
dimensions shown.

2n metres2n metres

3 metresa(n) ways b(n) ways

The first set of diagrams shows that

a(n) = 3a(n− 1) + 2b(n) for n ≥ 2, (1)

while the following
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give
b(n) = 2b(n− 1) + a(n− 1) for n ≥ 2. (2)

Here we have not a simple recurrence relation, but a system of two simultaneous re-
currences in two unknowns. To solve it, replace n by n− 1 in (1),

a(n− 1) = 3a(n− 2) + 2b(n− 1) for n ≥ 3, (3)

and then subtract twice equation (3) from equation (1), giving

a(n)− 2a(n− 1) = 3a(n− 1)− 6a(n− 2) + 2b(n)− 4b(n− 1)

for n ≥ 3. We can now use (2) to eliminate the b terms from this; after tidying up a bit
we get

a(n) = 7a(n− 1)− 6a(n− 2) .

Using the first set of diagrams, we have the initial condition a(1) = 5; similar pictures
(exercise!) show that b(1) = 1; then using (2) gives b(2) = 7 and a(2) = 29. So we have
to solve the initial value problem

a(n) = 7a(n− 1)− 6a(n− 2) , a(1) = 5 , a(2) = 29 ,

and applying the method of the previous problem (do it!) yields the answer

a(n) =
4× 6n + 1

5
.

Q1395 Find all real values of a and b such that the parabolas

y = x2 + ax+ b and y = −x2 + bx+ a

do not intersect.

SOLUTION The curves do not intersect whenever the equation

x2 + ax+ b = −x2 + bx+ a

has no solution. This equation is equivalent to the quadratic

2x2 + (a− b)x− (a− b) = 0 ,

and it has no (real) solution when the discriminant is negative,

(a− b)2 + 8(a− b) < 0 ,

which can be rewritten as
(a− b)(a− b+ 8) < 0 .

If the product is negative then one factor must be positive and the other negative. But
a−b+8 is clearly the bigger of the two factors, so it is positive and the other is negative.
Thus

a− b < 0 and a− b+ 8 > 0 ,
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that is,
0 < b− a < 8 ,

and this is the condition for the parabolas not to intersect.

NOW TRY problem 1402.

Q1396 Consider a triangle with sides of length a, b, c, and let l be the length of the line
which bisects the angle opposite the side of length a. Prove that

l2 =
4bc

(b+ c)2
s(s− a) ,

where s is the semi perimeter of the triangle. Deduce that the area of the triangle is at
least

lalblc
8s

,

where la, lb, lc are the lengths of the three angle–bisectors.

SOLUTION Let the angle opposite the side of length a be 2α. The area of the triangle
is the sum of the two smaller triangular areas formed by the angle–bisector:

bc sin 2α

2
=

bl sinα

2
+

cl sinα

2
.

Now using the double–angle formula sin 2α = 2 sinα cosα and cancelling sinα (which
is not zero since 0 < α < π), we can simplify this equality to get

2bc cosα = (b+ c)l . (∗)

On the other hand, we can use the cosine rule and another double–angle formula to
obtain

a2 = b2 + c2 − 2bc cos 2α = b2 + c2 − 2bc(2 cos2 α− 1) ;

multiplying both sides by bc and substituting from equation (∗) yields

bca2 = bc(b2 + c2 + 2bc)− (2bc cosα)2

= bc(b+ c)2 − (b+ c)2l2 .

Therefore

l2 =
bc((b+ c)2 − a2)

(b+ c)2

=
bc(b+ c+ a)(b+ c− a)

(b+ c)2

=
bc(2s)(2s− 2a)

(b+ c)2

=
4bc

(b+ c)2
s(s− a)
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as required. Finding a similar formula for the bisectors of the other two angles, and
multiplying all three results, gives

l2
a
l2
b
l2
c

=
4bc

(b+ c)2
s(s− a)

4ca

(c+ a)2
s(s− b)

4ab

(a+ b)2
s(s− c)

=
64a2b2c2

(b+ c)2(c+ a)2(a+ b)2
s2[s(s− a)(s− b)(s− c)] .

But by Heron’s formula, the expression in square brackets is just the square of the area
of the triangle:

l2
a
l2
b
l2
c
=

64a2b2c2

(b+ c)2(c+ a)2(a+ b)2
s2A2 ,

and so

A =
b+ c

a

c+ a

b

a+ b

c

lalblc
8s

.

Finally, since a, b, c are the sides of a triangle, each of the first three fractions in this
expression is at least 1; hence

A ≥ lalblc
8s

as claimed.

Q1397 Find a number consisting of four different digits in ascending order, such that
if the digits are written in reverse to form another four-digit number, and if the two
four–digit numbers are added, the result is 9218.

SOLUTION If the digits, in ascending order, are a, b, c, d, then we have

(1000a+ 100b+ 10c+ d) + (1000d+ 100c+ 10b+ a) = 9218 , (1)

that is,
1001(a+ d) + 110(b+ c) = 9218 .

Looking at the units digits in (1) we have a + d = 8, or a + d = 18 with a “carry” of 1
into the tens column; but the latter is impossible since two different digits cannot add
up to 18. So a+ d = 8, and equation (2) gives b+ c = 11. Since a, b, c, d are single digits
in increasing order, and a 6= 0 (otherwise we would not have two four–digit numbers),
the only possibility is a = 1, d = 7, b = 5, c = 6. So the required number is 1567.

Q1398 Let p be a polynomial and suppose that p(x) is a factor of p(x2). Prove that the
equation p(x) = 0 has no real solutions except possibly 0, 1 or −1.

SOLUTION If p(x) is a factor of p(x2) then there is a polynomial q(x) such that

p(x2) = p(x)q(x) .

Now let a be a solution of p(x) = 0; that is, p(a) = 0. Then

p(a2) = p(a)q(a) = 0 q(a) = 0 ,
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so a2 is a solution of the same equation. Repeating the procedure, we find that a, a2, a4, a8, . . .
are all solutions of p(x) = 0. But a polynomial equation can only have a finite number
of solutions, so (at least) two of these solutions must be the same:

ak = al , k 6= l .

Thus ak(1−al−k) = 0 and we have either ak = 0 or al−k = 1. So a can only be 0, 1 or−1.

Q1399 There are n double seats in a railway carriage, all occupied. People get up and
leave, one at a time, in random order. Find the probability that after the last pair is
broken there remain exactly k people in the carriage.

SOLUTION Imagine that we make a video of the whole procedure, and then view the
video backwards, so that instead of getting up and leaving, people arrive and sit down.
We can then see that the answer to the problem posed is the same as to the following:
if people arrive one by one in the empty carriage and choose seats at random, find the
probability that the first k people form no pairs, and person k + 1 sits next to one of
the people already there. The probability is clearly zero if k > n, so we suppose that
k ≤ n. Now the first person clearly does not form a pair; the second avoids a pair with
probability (2n− 2)/(2n− 1); the third avoids a pair with probability (2n− 4)/(2n− 2);
and so on. The probability that the first k people form no pairs is

2n− 2

2n− 1

2n− 4

2n− 2
· · · 2n− 2(k − 1)

2n− (k − 1)
.

There are now 2n−k unoccupied seats, including k which are next to an occupied seat;
so the probability that person k + 1 does form a pair is k/(2n− k). The final answer is
the above product times this fraction; it can be simplified in various ways to get

2n

2n

2n− 2

2n− 1

2n− 4

2n− 2
· · · 2n− 2(k − 1)

2n− (k − 1)

k

2n− k

= k 2k
n!

(n− k)!

(2n− k − 1)!

(2n− k)!
.

Q1400 In the following diagram, in how many ways can one travel along the lines
from point A to point B if one may only move upwards and to the right?

A

B

1

2

3

4

5

6

7

8

9

10

11

12
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SOLUTION To help explain the solution, we have labelled some more points in the
diagram. It is not hard to see that any path from A to B must fall into one of the
following categories:

A–1–2–B A–3–4–2–B A–3–4–5–6–B
A–7–8–2–B A–7–8–5–6–B A–7–8–9–10–B
A–11–5–6–B A–11–9–10–B A–11–12–B

Consider, for example, the number of ways to go from A to 7. We have to take four
steps of which two are upwards and two are to the right; these four steps may be
taken in any order and so the number of possibilities is the binomial coefficient

(

4

2

)

,
sometimes written 4C2 or C(4, 2). Applying the same ideas to all the other “rectangles”
in the diagram and evaluating the binomial coefficients by means of Pascal’s triangle,
the number of possible routes in each of the above nine categories is

(

3

1

)

= 3
(

5

1

)(

4

1

)

= 20
(

5

1

)(

3

1

)(

4

2

)

= 90
(

4

2

)

= 6
(

4

2

)(

4

1

)(

4

2

)

= 144
(

4

2

)(

3

1

)(

5

1

)

= 90
(

4

2

)

= 6
(

4

1

)(

5

1

)

= 20
(

3

1

)

= 3

and the total is 382.
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