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Linear Diophantine Equations
David Angell 1

Many popular and well–known puzzles can be approached by setting up and solving
equations. Frequently, however, it will be necessary to find solutions which are not just
any old real numbers, but integers. Here are two examples.

• The absent–minded bank teller . Shane went to the bank and asked the teller
to pay him a certain amount of money, in dollars and cents, from his account.
When paying out the money, however, the bank teller accidentally switched the
numbers of dollars and cents. After buying an ice cream for $2.55, Shane found
that he had left exactly four times what he had asked for. How much had he
asked for?

• The monkey and the coconuts . Five sailors washed up on a desert island col-
lect a pile of coconuts before going to sleep. During the night one of them gets
up, divides the pile into five equal parts and throws one leftover coconut to the
monkey, hides one of the five parts and puts the other four parts back into one
pile. The other castaways, one at a time, do exactly the same. In the morning
they share out the remaining coconuts and find that they divide exactly into five
equal parts. How many coconuts were there?

To begin the first problem, we could let x be the number of dollars and y the number
of cents Shane wanted. Then the amount he asked for was 100x + y cents, the amount
he received was 100y + x cents, and so

4(100x+ y) + 255 = 100y + x ;

we can now collect terms,
399x− 96y = −255 ,

and cancel common factors, simplifying the equation to

133x− 32y = −85 . (1)

If we seek real numbers x, y to satisfy this equation, it is ridiculously simple: let x
be anything you like, then calculate y from the equation. However, the problem of the
bank teller only makes cents – sorry, makes sense – if x and y are non–negative integers
less than 100. Because of the restriction, (1) is called a linear Diophantine equation in
two variables. Some of the most famous difficult problems in number theory involve
Diophantine equations of higher degree, that is, involving squares, cubes or even ex-
ponentials.

1Dr David Angell is a pure mathematician and associate lecturer in the School of Mathematics and
Statistics at the University of New South Wales.
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• Pythagorean triples : find all positive integers x, y, z which form the side lengths
of a right–angled triangle: that is, solve x2 + y2 = z2 in positive integers.

• Fermat’s Last Theorem : prove that if n ≥ 3 then the equation xn + yn = zn has no
solution in non–zero integers.

• Mordell’s equation : solve in integers x2 + 2 = y3.

• Catalan’s conjecture : the only consecutive positive powers greater than the first
are 8 and 9. That is, the only solution of xm − yn = 1 with x, y positive integers
and m,n ≥ 2 is x = 3, m = 2, y = 2, n = 3.

It’s not just puzzles, however! Some very important applications of mathematics in-
volve Diophantine equations.

• RSA cryptography : working out how to decode your own encrypted messages
requires solving the equation

ex− (p− 1)(q − 1)y = 1 ,

where e, p, q are known integers and x, y are to be found.

• Balancing formulae for chemical reactions can be accomplished by using Dio-
phantine equations – the article at pubs.acs.org/doi/abs/10.1021/ed045p731
gives an exposition of this.

• In www.cs.helsinki.fi/u/gurtov/papers/per paper.pdf, Diophantine
equations are applied to the design and analysis of peer–to–peer computing net-
works.

The term Diophantine equation commemorates the Greek mathematician Diophantus
(third century a.d.?), who lived and worked in the city of Alexandria (now in Egypt),
and wrote a treatise on solving various kinds of equations. In some ways it is rather
odd to refer to “Diophantine equations”, as it is the solutions which are restricted, not
the equations; however the term is widely used and probably cannot now be changed!
The higher degree Diophantine equations can be exceedingly difficult to solve2, and in
this article we shall just explain how to completely solve the relatively straightforward
linear Diophantine equations.

So, we consider an equation
ax+ by = c ,

where a, b, c are given integers and we wish to find all possible solutions in integers
x, y. The first question is whether or not there are any solutions at all. Suppose that
a and b have a common factor g > 1. If g is not a factor of c then the equation has no

2But for a few ideas you might like to read my article Beginning algebraic number theory,
which appeared in Parabola Incorporating Function volume 41, issue 1, and is available online at
http://www.parabola.unsw.edu.au/vol41 no1/vol41 no1 2.pdf.
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solution, because the left-hand side is a multiple of g and the right-hand side is not.
For a very simple example,

12345678x+ 98765432y = 123456789

has no solution because, regardless of the values of x and y, the left-hand side is even
and the right-hand side odd. For a (slightly) harder case,

2013x− 3102y = 1

has no solution since the left-hand side is a multiple of 3 and the right-hand side isn’t.
Notice by the way that in this example the coefficient b is negative: this is no problem
at all.

On the other hand, suppose that every common factor of a and b is also a factor of c.
Then we can divide both sides by the greatest common factor, leaving a case in which
the (new) coefficients on the left-hand side have no common factor except 1. This is, in
fact, exactly how we derived (1) from the previous equation: we observed that 399 and
96 have a common factor of 3, which is also a factor of −255 on the right-hand side, so
we cancelled the 3. Another example: to solve the equation

4455x+ 6677y = 8899

we would notice that the coefficients on the left-hand side have a common factor of 11
(easy!) and no more (a bit harder) and would divide out the 11 to give

405x+ 607y = 809 .

It is true (though not by any means obvious) that once the left-hand side coefficients
have no common factor, the equation is sure to have a solution in integers. Here is the
relevant result.
Theorem. Solution of linear Diophantine equations in two variables . Suppose that a
and b are integers with no common factor, and c is any integer. Then

• the equation ax+ by = c has integer solutions x, y;

• if x = x0, y = y0 is one specific solution of the equation, then all solutions are
given by the formulae

x = x0 − bt , y = y0 + at , (2)

where t is an integer.

We won’t prove this theorem, but will show by means of an example how to find a
solution x0, y0. Once this is done, finding the complete solution is easy – all we have to
do is substitute known numbers into the formulae (2). So, let’s solve the “bank teller
equation”:

133x− 32y = −85 .

The main step is to apply the Euclidean algorithm to the left-hand side coefficients.
This means, divide the larger by the smaller to give a quotient and remainder; then do
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the same with the previous divisor and the remainder; and so on. In this example we
have

133 = 4× 32 + 5

32 = 6× 5 + 2

5 = 2× 2 + 1 .

(Make sure you are clear on the pattern here – note how the original remainder 5 moves
to the left in each subsequent equation.) The 1 at the end confirms that our original
numbers 133 and 32 have no common factor – if we didn’t get a 1, we would have to
go back to the previous step, find common factors, and see whether or not they are also
factors of the right-hand side.

Next, we run the Euclidean algorithm “backwards” in order to write 1 as a multiple
of 133 plus a multiple of 32. First rewrite all the divisions so as to make the remainder
the subject:

1 = 5− 2× 2

2 = 32− 6× 5

5 = 133− 4× 32

and then substitute each remainder into the previous equation, expanding and collect-
ing terms at each step:

1 = 5− 2× 2

= 5− 2× (32− 6× 5)

= 5− 2× 32 + 12× 5

= −2× 32 + 13× 5

= −2× 32 + 13× (133− 4× 32)

= −2× 32 + 13× 133− 52× 32

= 13× 133− 54× 32 .

Finally, multiply both sides by the number −85 from equation (1), and collect terms on
the right-hand side in such a way that the coefficients 133 and 32 are not altered:

−85 = −85× 13× 133 + 85× 54× 32

= −1105× 133 + 4590× 32 .

Now let’s look at our situation. We seek x and y such that

133x− 32y = −85 ;

and we have just found that

133× (−1105)− 32× (−4590) = −85 .
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If you look carefully at these two equations it should be clear that one possible solution
is x = −1105, y = −4590; these can be our x0 and y0, and then from (2) the complete
solution of our equation is

x = −1105 + 32t , y = −4590 + 133t , where t is an integer.

Often a formula such as this will be the end of the problem; however, for the “bank
teller” puzzle there is one more requirement: x and y should both be non–negative and
less than 100. We have to try to find a value of t which will accomplish this. Looking
at y first, we need

0 ≤ −4590 + 133t < 100 ,

and a bit of work turns this into

34.5 ≤ t < 35.3 ;

since t has to be an integer there is only one possibility, t = 35, giving the value y = 65.
Does this give an admissible value for x? If not, the puzzle has no solution; however,
we calculate

x = −1105 + 32t = −1105 + 32× 35 = 15 ,

which is fine. So the answer to the puzzle is that Shane asked the bank teller for $15.65.
A few of the questions in the problem section of this issue can be solved by means

of Diophantine equations. We’ll conclude this article by summarising the solution pro-
cedure. Given integers a, b, c, we wish to find integer solutions x, y of the equation
ax+ by = c.

1. Cancel from the equation all possible common factors of a, b, c. If the left-hand
side coefficients still have a common factor which is not a factor of the right-hand
side, then the equation has no solution. Otherwise, proceed. Note that from here
on a, b, c refer to the values after cancelling any common factors – these may not
be the same as the original values of a, b, c.

2. Apply the Euclidean algorithm to a, b: keep going until you end up with 1 as the
final remainder.

3. Run the Euclidean algorithm “backwards” in order to write 1 as a multiple of a
plus a multiple of b.

4. Multiply both sides by c, and collect terms in such a way that we now have c
written as a multiple of a plus a multiple of b.

5. By comparing with the equation obtained at the end of step 1, write down a
specific solution x = x0, y = y0.

6. Use (2) to write down the general solution for x and y in terms of an integer t.
Note that the a and b in the formula will be those obtained after the cancellation
in step 1, and possibly not the given a and b.
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7. If necessary, choose appropriate value(s) of t in order to satisfy any additional
conditions in the problem.

If you spend a bit of time learning and mastering this procedure, you will find that
Diophantine equations form a useful technique for solving a wide variety of puzzles.

6


