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Exploring biology through mathematical models: glucose

transporter trafficking
Peter Nguyen1

In order to make use of and regulate glucose in the blood stream, the body alters the
rate of passage of glucose into and out of cells. For example, in moments of high phys-
ical exertion, muscle cells require increased amounts of energy to fuel their increased
activities and take more glucose from the bloodstream. Another example is the in-
creased uptake of glucose by fat cells after a meal in an effort to store the transitory
increase in available energy. These cells can do this since they have special machines
known as glucose transporter proteins on their surfaces, that act as gateways through
which glucose can cross the otherwise impermeable layer covering the cell known as
the plasma membrane. Cells change the amount of glucose going in or out by reg-
ulating the number of such gateways exposed on the surface of the cell. Gateways
removed from the surface are no longer exposed to glucose outside the cell and this
reduces how much glucose the cell takes in.

The cell manages to do this by pulling parts of the plasma membrane inwards into
the cell, forming spherical compartments known as vesicles. The glucose transporters
which exist on the membrane are then taken inside the cell along with the vesicles, as
seen diagrammatically in Figure 1. The reverse process occurs when the cell requires
more glucose: it may eithermakemore transporters (a very slow process) and/or cause
pre-existing transporters to move to the surface where they may increase the rate of
glucose transportation into the cell. The reader is encouraged to consult an earlier ar-
ticle (A.C.F. Coster, Modelling the movement of vesicles in cells, Parabola Incorporating
Function, 46(3), 2010) for further details on vesicle movement. One such gateway is
glucose transporter type 4 (GLUT4) which is responsive to chemical signals from the
bloodstream, specifically to the hormone insulin.

We are particularly motivated to understand the glucose transporter system be-
cause it is involved in a very common disease–diabetes mellitus. In type 2 diabetes,
cells no longer respond as they should to insulin signals and so the glucose transporta-
tion system fails to respond to the body’s requirements. For example, if blood glucose
levels rise after a meal but there are too few GLUT4 at the surface of cells to trans-
port the available glucose then this may result in long term elevation of blood glucose,
which is symptomatic of diabetes.

In this article, we’ll see how simple mathematical modelling of this system may
be carried out, evaluated and to some degree refined with more complex models. We

1Peter Nguyen is in his third year of a mathematics degree at UNSW. He undertook this work as a
part of a vacation scholarship with Dr. Adelle Coster at the School of Mathematics and Statistics, UNSW.

1



Figure 1: A (very) simplified diagram of a reduction in glucose uptake, achieved by
decreasing the number of GLUT4 at the plasma membrane.

will also make adjustments to this model that are informed by biological knowledge
of the glucose transporter system. It is hoped that the reader will appreciate a fruit-
ful interplay between maths and biological research, that biology presents interesting
phenomena that can be understood from a mathematical viewpoint and how maths
may suggest routes for future biological investigation.

The empirical observations: transition and steady state experiments

For the purposes of this study, two experimental procedures were investigated. The
first procedure is called the transition experiment and the second procedure is called
the steady state experiment. In the transition experiment, the surface concentration of
GLUT4 of the cells weremeasured as a function of time. The cells were first observed in
a steady base state, that is, they were observed when no insulin was present. After the
base state was measured, the cells were exposed to a predetermined quantity of insulin
and the change in surface GLUT4was recorded as a function of time. Eventually, it was
observed that the surface GLUT4 settled into a new steady state which we’ll call the
insulin stimulated state. Note that these steady states show large scale constant levels
of surface GLUT4; this does not imply that the movement of GLUT4 from surface to
interior stopped but rather that the cell was in dynamic equilibrium where the rates of
GLUT4 to and from the surface were just balanced to cancel each other out and have a
zero net rate of trafficking.

In the steady state experiments, the cells were already in one of the two steady
states (base or insulin stimulated) and the surface GLUT4 was labelled with a chemical
so that any GLUT4 exposed to the cell surface glowed. As the cell was in a state of
dynamic equilibrium, GLUT4 trafficking still occurred and therefore labelled GLUT4
from the surface was moved into the cell interior and both labelled and unlabelled
GLUT4 made it to the surface. As this process continued, the total concentration of la-
belled GLUT4 increased until all the GLUT4 participating in the cell’s cycling pathway
was labelled. In this experiment, the total concentration of labelled GLUT4 with time
was recorded.

Throughout, we will illustrate our discussions with comparisons to data taken from
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these two modes of experiment conducted on two different types of cells: pre-fat cells
and fat cells. Pre-fat cells are a special type of cell in an early stage of development
that under appropriate conditions can change 2 into fat cells. Fat cells are cells that
primarily function to store energy as fat (more generally, lipids). A proportion of such
lipids are made as a consequence of the way glucose is processed in cells.

Differential equations: a common tool for modelling

We now take a little diversion from our discussion of biology to familiarise ourselves
with common mathematical tools, techniques and objects of study which we shall
make use of in our modelling namely, differential equations (DEs). The reader too,
may have already been exposed to this notion during senior high school mathematics:
a differential equation is a way to express the change of some quantities with respect to
others, according to a given rule describing this change and naturally, they involve the
familiar notion of the derivative. The differential equation is often the tool of choice
employed in modelling the natural world because such problems often involve rela-
tionships between various changing quantities. Intuitive examples include quantities
that change with time: distance, population growth, cost, consumption of resources
and so on. A goal that we often aim towards when dealing with differential equa-
tions is the obtaining of a solution to the equation. This solution is not a set of values
as in the case of elementary algebraic equations with which we are all familiar ( e.g.
x2 = 1 =⇒ x = ±1) but yet another equation–this time without referring to deriva-
tives, that explicitly describe the relationship between two (or more) variables.

Regardless of the physical nature of the variables, theremay be some unifying struc-
ture that underlies their dynamics. That is, they may change according to very similar
rules. If we are able to mathematically respond to and understand these general rules
we may be able to obtain solutions to an incredibly diverse range of specific problems
that arise in many and varied fields. This ‘line of thinking’ so to speak is very com-
mon and powerful in maths and is known as a process of abstraction. The reader is
encouraged to frequently reflect on its application as (s)he will no doubt meet with it
repeatedly throughout future studies.

Compartmental modelling

In order to understand the trafficking of GLUT4 in the cells, we need to quantita-
tively describe the ongoing actions and processes in precise mathematical terminol-
ogy. This is the process of constructing mathematical representations or models of the
phenomenon. A guiding principle that we will observe throughout this process is
commonly known as Ockham’s razor: that we should favour the simplest model pos-
sible that sufficiently describes the observed behaviour of our system of interest. There

2The conventionally accepted biological term for such a process is ‘differentiation’ but is avoided to
prevent confusion in a mathematical context.
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is good reason to adopt this principle–as by making fewer assumptions we are able
to avoid postulating unnecessary complexity and the difficulties that arise in testing
or confirming them. Further, simpler models are more mathematically tractable than
complex ones; a model may still have utility even though it does not entirely reflect
our phenomenon of interest, as long as it is an adequate reflection of specific aspects
of the phenomenon. This ongoing tension between detail and tractability is present in
any modelling task and it is up to the judgment of the individual as to what details are
necessary and relevant to include in any mathematical representation.

For the types of situations like those described here, a technique called compart-
mental modelling is often fruitfully applied. The simplest illustration of compartmen-
tal modelling is a single compartment outflow as depicted in Figure 2.

Figure 2: A simple outflow diagram

Mindful that there is no inflow term and a single outflow, the differential equation
describing this process is

da

dt
= −ka. (1)

where a is the concentration of the substance, t is time and k a constant. We note that
the rate of outflow from each compartment is proportional to the concentration of the
substance present in the compartment at that time. This is termed a ‘first order’ model.
Similarly the rate of inflow into a compartment is proportional to the concentration of
the substance contained within the individual source compartments from which it is
trafficked.

The differential equation (1) should be familiar to the reader, having studied senior
mathematics in high school. It is a separable differential equation and other than the
trivial solution, a = 0, can be solved as follows:

∫
da

a
= −k

∫

dt =⇒ ln a = −kt+ c.

Assuming initial condition a (0) = a0 > 0, we have c = ln a0 and so a (t) = a0e
−kt.3

We therefore find that an exponential may arise and indicate processes of outflow (or
inflow if the constant k is negative, equivalent to the arrow entering rather than leaving
the compartment) and it is reasonable to expect exponentials to arise in more compli-
cated compartmental models. The reader should also note that the parameter k here

3Other techniques that can be used to investigate the differential equations in this article are the
integrating factor technique and method of undetermined coefficients. The reader is encouraged to
refer to a standard text on Differential Equations for details on these methods.
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affects rate, with increasing k resulting in faster outflow, in fact see that if k = 0 then
a (t) = a0 indicating no outflow at all.

Going one step further, we can investigate the case of two compartments as seen in
Figure 3.

Figure 3: A simple two compartment diagram

For compartment a, we have the same differential equation (1) with exactly the
same solution. Compartment b receives the outflow from a and so db

dt
= ka. Assuming

that there is a0 amount of substance in a and b is empty at t = 0, we see that the amount
at any given time is

b (t) = a0 − a (t) = a0 − a0e
−kt = a0

(
1− e−kt

)
. (2)

We again see that exponentials are involved in describing the behaviour of such sys-
tems. For a final toy example, we allow drainage from compartment b, depicted in
Figure 4.

Figure 4: A simple two compartment diagram with drainage

If we assume that initially b is empty, and there is a0 in a, we arrive at the differential
equations

da

dt
= −k1a,

db

dt
= k1a− k2b, (3)

and see then that while the solution for compartment a is unchanged, the solution for
b is:

b (t) =
k1a0

k1 − k2

(
1− e−t(k1−k2 )

)
e−k2 t. (4)

The reader can verify this by substituting the solutions for a and b back into the
differential equations (3). Here, we have assumed implicitly that k1 6= k2. If instead
however, the rate constants are equal (say k1 = k2 = k) we see that db

dt
= k (a− b)which

with the same initial condition b (0) = 0, yields the solution: b (t) = a0ke
−ktt.
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This demonstrates that in a solution describing the behaviour of flow in a compart-
ment, a single exponential by itself may reflect the combination of a number of effects
or multiple processes, some of which may be observationally indistinguishable from a
simpler compartment model. This may be because some rate constants have the same
value (as above). Alternatively there may be different compartment models (as we
shall see, we are not restricted to model just simple sequential flows) with different
connections and flows that, depending on the value of rate constants may give rise
to seemingly simple solution forms. In such cases a single exponential may be an ade-
quate description of overall behaviour system, albeit not a true reflection of the internal
structure of the system. The motivated reader may wish to seek out other examples of
this.

This discussion illustrates firstly, the tension between detail and tractability as it
is much easier to work with a simple forms than more complex ones and secondly,
the notion that it is not possible to confirm with absolute certainty that a mathematical
representation is a true description of a physical system. Here, we only deal in possible
explanations and not certainties. However, this is not to say, that we are unable to rule
out with certainty some models as shall be seen further in this article.

This modelling can be extended to multiple compartments and multiple connec-
tions. For each compartment in the model, the total rate of change is equal to the
degree of inflow less the outflow per unit time, that is (if the processes are first order
and the substance is conserved):

da

dt
=

∑

i

(kibi)

︸ ︷︷ ︸

inflow

−
∑

j

kja

︸ ︷︷ ︸

outflow

where







a amount of GLUT4 in A

bi
amount of GLUT4 in
source compartments Bi

k
rate constants between
compartments.

(5)

A model of GLUT4 recycling

For our system we begin with the simple assumption that the total amount of GLUT4
in a cell is constant. We are interested in tracking the changes in the concentration of
GLUT4 present at the surface of the cell, in the plasma membrane. It is therefore in-
tuitive to conceptually divide the cell into two ‘compartments’: the plasma membrane
and the cell interior. We can think of the trafficking of GLUT4 as the ongoing flow be-
tween these two compartments. We can alter the concentration of GLUT4 at the surface
by changing the respective rates of flow from one compartment to the other; as shown
in Figure 5. Since we only have two compartments here plasma membrane GLUT4
levels, p, change as a result of the outflow rate, kex, from the interior of the cell and
proportional to the concentration of GLUT4 in the interior, x, and also the inflow rate,
ken, (flow from P to X) and proportional to the concentration of GLUT4 at the plasma
membrane, p. The rate of change in x follows similarly. We can express this as a pair of
differential equations as shown,
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Figure 5: A diagram of the two compartment model. P represents the plasma mem-
brane on the cell surface andX represents the cell interior. kex is the outflow rate to the
plasma membrane and ken is the inflow rate to the interior.

dp

dt
= kexx− kenp and

dx

dt
= kenp− kexx. (6)

As the reader will notice, the presence of additional compartments and rates just
required additional differential equations of the form (5) to be included in the system.
This demonstrates the expandable and modular nature of compartmental modelling
and the ease with which models can be further extended. We will now use this model
to predict the behaviour of the system in the steady and transition states. We can then
evaluate how appropriate the model is by comparing our predictions with the data
obtained in the experiments. Empirically, we can estimate the initial level of surface
GLUT4 by measuring the initial level of labelled surface transporter instantaneously
upon exposing the cells to the glowing chemical tag. That is p (0) = p0, for some
estimated p0. We assume that there are constant levels of GLUT4 in the entire system
so this total, T = p+ x, and hence

dp

dt
= kexx− kenp = kex (T − p)− kenp.

This (separable) differential equation, coupled with the initial condition above yields
the solution:

p (t) =
kex T

ken + kex
+ e−(ken+kex )t

[

p0 −
kex T

ken + kex

]

. (7)

The reader is encouraged to verify this by also finding x (t) and substituting these back
into the original differential equations (6).

In the steady state, the proportions of GLUT4 do not fluctuate (although the indi-
vidual GLUT4 are moving) and therefore

dp

dt
=

dx

dt
= 0.
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Hence
kexx− kenp = 0.

Since p = T − x:

x =

(
ken

ken + kex

)

T and p =

(

1−
ken

ken + kex

)

T =

(
kex

ken + kex

)

T.

We see therefore, that the steady state concentrations of GLUT4 are completely de-
termined by the value of the rate constants. We denote steady state proportions as
follows:

Sx =
ken

ken + kex
and Sp =

kex

ken + kex
. (8)

This sheds light on the structure of our solution for p (t), indeed limt→∞ p (t) =
kex T

ken+kex
= SpT .

In the case of the steady state experiment, to track the change in total labelled
GLUT4 with time, we need to introduce some extra terms to account for and distin-
guish between labelled and unlabelled GLUT4. We therefore divide GLUT4 into la-
belled and unlabelled forms, denoting subscript u for unlabelled and ℓ for labelled so
that x = xu + xℓ (since at any given time, there may be both labelled and unlabelled
GLUT4 within the cell) and p = pℓ (since all GLUT4 on the membrane is instanta-
neously labelled when they are exposed to the glowing labelling marker at the sur-
face). Denoting L = xℓ + pℓ we note that T = L + xu. Since the GLUT4 cannot become
unlabelled and eventually all GLUT4 recycles to the plasma membrane, the amount of
total labelled GLUT4 must increase until all GLUT4 are labelled. The only source of
unlabelled GLUT4 resides in the interior of the cell and is labelled once it is trafficked
from interior to the membrane with rate constant kex. Therefore,

dL

dt
= kexxu = kex (T − L) = kexT − kexL.

We see that now we end up with a first order linear differential equation with
constant rate coefficients. With this differential equation, we couple the conditions
L (0) = SpT since at the start of the experiment, we assume that any surface GLUT4
is instantaneously labelled. Also, eventually all GLUT4 in the trafficking cycle will be
exposed to the surface at some point and thus become labelled (i.e. limt→∞ L (t) = T ).
The reader is encouraged to use separation of variables or the integrating factor tech-
nique to see that this system yields the solution (known as an analytic solution):

L (t) = T
(
1− Sxe

−kext
)
. (9)

We can approach the model transition experiment in a similar manner. However,
this time the experiment is complicated by the fact that between the transition between
the basal state and the insulin stimulated state, the trafficking rates, kex and ken, are not
constant. It is much more difficult to deal with differential equations with variable co-
efficients and so we must make further simplifying assumptions: we assume that the
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cells are initially in a steady base state and upon insulin exposure, the rate constants
instantaneously change to their insulin stimulated values. We can translate these as-
sumptions mathematically: initial basal state implies that at t = 0, the concentrations
of GLUT4 in each compartment are specified by (8) with Sx = Sbasal

x and Sp = Sbasal
p

with rate constants kex = kbasal
ex and ken = kbasal

en . However, due to instantaneous change
upon insulin exposure, all rate constants for t > 0 take on their insulin stimulated val-
ues (kex = kinsulin

ex and ken = kinsulin
en ). Therefore, we have precisely the solution given

by (7) with p0 = Sbasal
p T :

p (t) = Sinsulin
p T + e−(ken+kex)t

[
Sbasal
p − Sinsulin

p

]
T. (10)

Now that we have the analytic descriptions, we can fit the solutions (9) and (10)
to their data respectively. Here the parameter T (the total GLUT4 participating in the
trafficking pathway) was allowed to vary. The comparison to the experimental data is
shown in Figure 6. For the purposes of this study, MATLAB was used to perform the
fits.
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Figure 6: Two compartment model uptake experiment plot of L against t (min). (a) Fat

cell (Adipocyte) approximate parameter estimates by curve fitting: base (ken = 0.036, kex =

0.005, T = 0.307) and insulin (ken = 0.086, kex = 0.029, T = 1.007). (b) Pre-fat cell (Fi-

broblast) parameter estimates: base (ken = 0.0882, kex = 0.0277, T = 0.978) and insulin

(ken = 0.125, kex = 0.043, T = 0.9879). Data from supplied by Adelle Coster (School of Mathe-

matics and Statistics, UNSW) and Cynthia Mastik (Department of Biochemistry and Molecular

Biology, University of Nevada School of Medicine).

Throughout this investigation, we have illustrated the construction of compartment
models. Our current model is now sufficiently sophisticated to qualitatively reflect
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some behaviour of the system. However, it may not be the only model to do so. From
here, we may begin to investigate more quantitatively (for example, by fitting our an-
alytic solutions with biologically informed range of values to the data and arrive at
rate constant estimates, goodness of fit and confidence bounds). We can compare such
quantitative predictions to that of the literature on GLUT4 and glucose transport. This
will allow us to further assess the appropriateness of our model. In fact, our current
model will undoubtedly turn out to be insufficient and will require even further devel-
opment. Regardless, each new development yields a more sophisticated model which
will continue to inform and be informed by biological research.
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