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Solutions 1421–1430
Q1421 Find all integer solutions of the equation 2013x+ 49y = 2.

SOLUTION Following the procedure set out in the article from the previous issue, we
apply the Euclidean algorithm to 2013 and 49. Thus

2013 = 41× 49 + 4

49 = 12× 4 + 1 .

The final 1 shows that 2013 and 49 have no common factor. Working backwards,

1 = 49− 12× 4

= 49− 12 (2013− 41× 49)

= −12× 2013 + 493× 49 ,

and multiplying both sides (carefully!) by 2 yields

2 = −24× 2013 + 986× 49 .

Comparing this with the desired equation shows that one possible solution is x = −24,
y = 986, and the result from the article shows (remembering that we already know a
and b have no common factor) that the complete solution is

x = −24− 49t , y = 986 + 2013t ,

where t is an integer.

Q1422 Seven pirates are marooned on a deserted island. Before going to sleep they
collect a pile of coconuts for food. During the night one of the pirates wakes up and
decides to take his share. He divides the pile into seven equal parts and finds that there
is one coconut left over, which he eats. He then puts six of the seven parts back into
one pile and runs away with his share. Later two more pirates wake up. Not realising
that one pirate has left, they also divide the pile into seven equal parts. There are two
coconuts over; they eat these, put five shares back into one pile and run away with
their own two shares. Later again three pirates wake up, divide the pile into seven, eat
three leftover coconuts, take three of the seven shares and leave. The last pirate gets
up in the morning. He sees that the other pirates have all gone, but he assumes they
are out looking for more coconuts so he decides to share out those at the campsite. He
finds that they divide into seven equal piles with none left over.

What is the smallest possible number of coconuts in the original pile?
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SOLUTION Let x be the number of coconuts in the original pile, a, b, c the number in
each share after the first three divisions, and y the number in each share after the final
division. Then

x = 7a+ 1 , 6a = 7b+ 2 , 5b = 7c+ 3 , 4c = 7y .

Eliminating a, b and c from these equations leaves

120x− 2401y = 988 . (∗)

We want x and y to be integers and so we use the standard method of solving linear
Diophantine equations – see the article in the previous issue. Applying the Euclidean
algorithm to 2401 and 120 is easy as it only has a single step! –

2401 = 20× 120 + 1 .

So we have
120× (−20)− 2401× (−1) = 1 ,

hence
120× (−19760)− 2401× (−988) = 988

and by comparing with (∗) we can write down the general solution

x = −19760 + 2401t where t is an integer.

(We can also find y, but it is not needed for this problem). The smallest possible positive
value for x is obtained by taking t = 9, giving a pile of x = 1849 coconuts.

Q1423 A rectangular dartboard has just two sections, which score 20 and 13 points
respectively. With an unlimited number of darts available, is there a highest score not
achievable? For instance, you can score 13, 20, 26, 33, 39, 40, 46, but not any other score
under 50.

20 13

SOLUTION We need to determine what numbers can and cannot be expressed in the
form 20x+ 13y, where x, y are integers and x ≥ 0, y ≥ 0. Suppose that a, b are positive
integers with no common factor. We shall prove the following:

• if c = ab − a − b, then the equation ax + by = c does not have a solution with
x, y ≥ 0;

• if c > ab− a− b, then the equation ax+ by = c does have a solution with x, y ≥ 0.
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First, suppose that
ax+ by = ab− a− b . (∗)

(We wish to show that this is not possible when x, y are non–negative integers.) The
equation can be written as

a(x+ 1) = b(a− y − 1) .

This means that b is a factor of a(x + 1); since a and b have no common factor, b must
be a factor of x+ 1. By a similar argument, writing (∗) as

b(y + 1) = a(b− x− 1) ,

we see that a is a factor of y + 1. Since x + 1 and y + 1 are positive integers, we have
x+ 1 ≥ b and y + 1 ≥ a. If we rewrite (∗) once more as

a(x+ 1) + b(y + 1) = ab ,

the left hand side is at least 2ab and the right hand side is ab, which is impossible. This
proves the first statement.

Now let c > ab − a − b and consider the equation ax + by = c. Since a and b have no
common factor, we know from the article in the previous issue that the equation has
solutions

x = x0 − bt , y = y0 + at

for any integer t; the question remains whether or not we can find a value of t such
that x, y ≥ 0. In fact, let t be the largest integer less than (x0 + 1)/b. Then we have

x0 + 1

b
− 1 ≤ t <

x0 + 1

b

and so
x = x0 − bt > x0 − b

x0 + 1

b
= −1 ;

moreover,

y = y0 + at ≥ y0 + a
(x0 + 1

b
− 1
)
=

ax0 + by0 + a− ab

b
,

and the facts that ax0 + by0 = c and c > ab− a− b give

y ≥ c+ a− ab

b
> −b

b
= −1 .

So x, y > −1, but since x, y are integers, this means that x, y ≥ 0, and we have found a
solution in non–negative integers.

In the case a = 20, b = 13 we have ab− a− b = 227, and this is the largest number not
achievable on our dartboard.
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Q1424 In problem 1413 (see the solution last issue), suppose that we do not use all
twenty–four numbers but remove those which are less than 1230. What is now the
smallest possible value of

|x− 1230|+ · · ·+ |x− 2013|+ · · ·+ |x− 3210| ?

SOLUTION The numbers remaining are 1230, 1302, 1320, those beginning with 2 (six
of these) and those beginning with 3 (six more). So we now have fifteen numbers and
we use the “odd case” of the solution to problem 1411. We have n = 15 and k = 8, so
the minimum value is obtained when x is the eighth smallest of the available numbers,
which is 2301. From formula (∗) in the solution of problem 1411, the minimum value
is

−1230− · · · − 2130 + 2310 + · · ·+ 3210

(note that 2301 itself is missing – it is neither added nor subtracted). The total of all
these numbers is 8847.

Q1425 As in problem 1414, an (a, b)–superknight is a knight–like chess piece which
moves a squares up, down, left or right and then b squares in a perpendicular direction.
In problem 1408 we saw that a (3, 8)–superknight can move from a square to the square
immediately to its right in thirteen moves: we have

5(8,−3) + 3(−8,−3) + (−3,−8) + 4(−3, 8) = (1, 0) ,

and the number of moves on the left hand side is 5 + 3 + 1 + 4 = 13. Next question: is
it possible to do this in fewer than 13 moves?

SOLUTION No, it is not. To move the (3, 8)–superknight one square to its right we
need

w(8,−3) + x(−8,−3) + y(−3,−8) + z(−3, 8) = (1, 0)

where w, x, y, z are integers, and the number of moves taken will be |w|+ |x|+ |y|+ |z|.
(Note that we can’t “subtract” moves – a coefficient of−5 would still count as 5 moves.)
Separating out the right/left moves and the up/down moves, we have

8w − 8x− 3y − 3z = 1 and − 3w − 3x− 8y + 8z = 0 .

Adding and subtracting these equations yields

5(w + z)− 11(x+ y) = 1 and 11(w − z)− 5(x− y) = 1 .

We solve the first equation by regarding w + z as a single variable, x+ y likewise, and
treating it as a linear Diophantine equation; similarly for the second; this gives

w + z = −2 + 11s , x+ y = −1 + 5s

w − z = 1 + 5t , x− y = 2 + 11t
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for some integers s, t; finally, we derive formulae for w, x, y, z by adding and subtract-
ing these,

2w = −1 + 11s+ 5t , 2x = 1 + 5s+ 11t ,

2y = −3 + 5s− 11t , 2z = −3 + 11s− 5t .

Now if |w|+ |x|+ |y|+ |z| < 13 then |2w| ≤ 24 and so on; hence

−24 ≤ −1 + 11s+ 5t ≤ 24

−24 ≤ 1 + 5s+ 11t ≤ 24

−24 ≤ −3 + 5s− 11t ≤ 24

−24 ≤ −3 + 11s− 5t ≤ 24 .

Adding the first and fourth inequalities, subtracting the second and third, gives

−48 ≤ −4 + 22s ≤ 48 and − 48 ≤ 4 + 22t ≤ 48

and so s = −2,−1, 0, 1, 2 and t = −2,−1, 0, 1, 2. From previous equations s + t is odd,
which leaves twelve pairs to check; the values of |w| + |x| + |y| + |z| calculated in the
following table

s = −2 s = −1 s = 0 s = 1 s = 2

t = −2 33 29

t = −1 35 13 29

t = 0 19 13

t = 1 37 19 33

t = 2 37 35

show that the number of moves is never less than 13.

Comment . . . and one of the 13–move solutions has s = 1, t = 0, giving w = 5, x = 3,
y = 1, z = 4, the solution we have found already.

Q1426 The number 132 is a multiple of 1, and of 3, and of 2. What is the largest
number you can find which has all its digits different, does not contain zero, and is a
multiple of each of its digits?

SOLUTION First assume that the digit 5 is not used. If all remaining non–zero digits
are used then the sum of the digits is 1 + 2 + 3 + 4 + 6 + 7 + 8 + 9 = 40; as 40 is not a
multiple of 9 this is impossible, and we can therefore only use (at most) seven digits.
For this to work, the digits must include at least one of 3 and 9; therefore the sum of
the digits is a multiple of 3; therefore the missing digit is 1, 4 or 7; therefore 9 is not the
missing digit, so the sum is actually a multiple of 9, and the missing digit has to be 4.

So, we are attempting to find the largest number (if any – conceivably we will have to
go down to six digits) consisting of the digits 1, 2, 3, 6, 7, 8, 9 which is a multiple of all
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these digits. Any number consisting of these digits will certainly be a multiple of 1, 3
and 9, so we need not consider these any further; and if it is a multiple of 8 then it will
automatically be a multiple of 2 and of 6. Therefore we are looking for a number which
is a multiple of 7 and 8.

To find the largest possible number we try first something beginning 9876 · · · . If it is
to be a multiple of 8 then the last digit has to be even, so there are two possibilities,
9876312 and 9876132. However the first of these is not a multiple of 7, and the second
is not a multiple of 8. The next largest possibility is 9867312, and it is not difficult to
check that this works.

It remains to consider the possibility of including 5 as one of the digits. In this case we
cannot have any even digits, as this would give a number which is a multiple both of
2 and of 5: such a number is a multiple of 10 and must end in 0, which is forbidden. So
the number could only contain at most five digits, and cannot be bigger than 9867312.
Therefore, the largest possible answer is 9867312.

Q1427 As in problem 1419, we wish to write a given number n as a sum of positive
integers in such a way that the product of the summands is as large as possible. For
this question, however, the summands must be 4 or more. For example, 14 = 4 + 5 + 5
is allowed but 14 = 2 + 3 + 4 + 5 is not. If n = 2013, what is the maximum product we
can obtain in this way?

SOLUTION The equations

8 = 4 + 4 , 9 = 4 + 5 , 10 = 4 + 6

and so on show that we can never obtain the largest possible product if we use sum-
mands of 8 or more, because in each case the product of summands on the right hand
side exceeds the left hand side. For the same reason, the equations

7 + 7 = 4 + 4 + 6 , 7 + 6 = 4 + 4 + 5 , 7 + 5 = 4 + 4 + 4 , 7 + 4 = 5 + 6

show that we can never use a 7. Thirdly,

6 + 6 = 4 + 4 + 4 , 6 + 5 + 5 = 4 + 4 + 4 + 4 , 6 + 4 = 5 + 5

show that we cannot have two 6s; if we have a 6 then we cannot have two 5s; and if we
have a 6 then we cannot have a 4. Finally,

5 + 5 + 5 + 5 = 4 + 4 + 4 + 4 + 4

shows that we cannot have more than three 5s. So, how can we find suitable numbers
adding up to 2013? If we don’t use any 4s then the most we can get is 6+ 5 or 5+ 5+5,
which are both way too small. If we do have 4s then we cannot have 6s and so we must
make up 2013 from 4s and 5s only, with at most three 5s. The only possibility is

2013 = 4 + · · ·+ 4 + 5

with one 5 and all the rest 4s. Therefore the maximum possible product is 5× 4502.
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Q1428 Use the following diagram to find the area of a triangle in terms of its side
lengths a, b and c. (The answer is a formula which you may know already.)

a

b c

h

x y

SOLUTION By Pythagoras’ Theorem we have

x2 + h2 = b2 and y2 + h2 = c2 ;

from the diagram,
x+ y = a . (1)

By subtracting the first two equations we have x2− y2 = b2− c2, and substituting these
results into the identity

(x+ y)2(x− y) = (x2 − y2)(x+ y)

yields
a2(x− y) = (b2 − c2)(x+ y) .

Collecting all the xs on the left hand side and all the ys on the right,

(a2 − b2 + c2)x = (a2 + b2 − c2)y . (2)

Now multiply both sides of (1) by a2 + b2 − c2 and substitute from (2); we obtain

(a2 + b2 − c2)x+ (a2 − b2 + c2)x = (a2 + b2 − c2)a ,

and simplifying yields
2ax = a2 + b2 − c2 .

If A is the area of the triangle then A = 1
2
ah and therefore

16A2 = 4a2h2 = 4a2(b2 − x2) = (2ab+ 2ax)(2ab− 2ax) ,

that is,
16A2 = (2ab+ a2 + b2 − c2)(2ab− a2 − b2 + c2) .

We can simplify the right hand side by using the difference of two squares a number
of times,

16A2 = ((a+ b)2 − c2)(c2 − (a− b)2)

= (a+ b+ c)(a+ b− c)(c+ a− b)(c− a+ b) .
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It is customary to write this in terms of the semi–perimeter s of the triangle, given by
2s = a+ b+ c, to obtain

16A2 = (2s)(2s− 2c)(2s− 2b)(2s− 2a)

and hence, finally,
A =

√
s(s− a)(s− b)(s− c) .

This is known as Heron’s formula.

Q1429 For what values of the coefficients a, b, c, d can the quartic equation

x4 + ax3 + bx2 + cx+ d = 0

be solved by using the method of problem 1412 (solution in the previous issue)?

SOLUTION We need to find coefficients k and l such that

x4 + ax3 + bx2 + cx+ d = (x2 + kx)2 + l(x2 + kx) + d . (∗)

Expanding the right hand side and equating coefficients of x3, x2 and x, we have

a = 2k , b = k2 + l , c = kl .

Solving the first two equations for k and l in terms of a and b, then substituting into the
third, gives

8c = a(4b− a2) ;

for the method to succeed it is necessary that this condition hold. Conversely, if that
condition is true and we choose k = 1

2
a, l = b − 1

4
a2, then it is easy to check that (∗) is

true, and we can proceed to solve the quartic as in the earlier problem.

Comment. We could also try looking for something like

x4 + ax3 + bx2 + cx+ d = (x2 + kx+m)2 + l(x2 + kx+m) + d ,

but if you think about it you should be able to see that this will not give us any further
possibilities.

Q1430 Find all solutions of the equation

x2 − 12bxc+ 23 = 0 ,

where bxc denotes the integer part of x, that is, x rounded down to the nearest integer.

SOLUTION Let n = bxc. Then x2 = 12n− 23, so that n ≥ 2; and hence

x =
√
12n− 23 ,

taking the positive root since x ≥ n > 0. Since n ≤ x < n+ 1 we have

n ≤
√
12n− 23 < n+ 1 ;
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this gives n2 − 12n + 23 ≤ 0 and n2 − 10n + 24 > 0. Calculation shows that the first
quadratic has a root between 2 and 3 and another between 9 and 10; since n is an integer
and the quadratic has a negative value, we have

3 ≤ n ≤ 9 .

Similarly the second inequality shows that

either n ≤ 3 or n ≥ 7 .

Combining all the information we have found gives four possibilities n = 3, 7, 8, 9, and
hence the four solutions

x =
√
13 ,
√
61 ,
√
73 ,
√
85 .
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