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History of Mathematics: Mathematical Induction and the

Foundations of Arithmetic
Michael A B Deakin!

In my last column, I introduced a technique of proof known as “mathematical in-
duction”. Itis a powerful technique, aimed at proving general formulas, by showing
that each instance of the formula implies the truth of the next. For completeness, and
for the sake of new readers, I reiterate the underlying principle, before going on to de-
scribe the application of the technique to the proof of some of the most basic properties
of the number system.

Here is the basis of the method as summarized in my last column. If we write
S(n) as a shorthand for the statement “Statement S about the number n is true”, then
all that we need do to prove S(n) for all values of n is to show two simpler things:

@ S,
(b) S(n) = S(n+ 1), for all n.

The reason is as follows: if, by (a), S(1) holds, then, by (b), S(2) holds, and then,
again by (2b), S(3) holds, and so on for all values of n. So the method consists of
assuming S(n), the induction hypothesis and from this deducing S(n + 1).

Late in the nineteenth century, two separate researchers both had the idea of ap-
plying this approach to the basis of arithmetic. The two researchers were Richard
Dedekind (1831-1916) in Germany and Giuseppe Peano (1858-1932) in Italy.

Dedekind’s work appeared in a short 1888 pamphlet, entitled Was sind und was
sollen die Zahlen? (What are numbers and what should they be?) This was translated
(rather clumsily) into English in 1901 as The Nature and Meaning of Numbers and put to-
gether with another of Dedekind’s works in a booklet, Essays on the Theory of Numbers.?
Peano’s independent advancement of exactly the same ideas came the following year
in a booklet called Arithmetices principia, nova methodo exposita (Arithmetical principles
newly explained), written for a still unknown reason in Latin. It is, however, Peano’s
name rather than Dedekind’s that has become attached to the mathematical advance
in question. Peano’s biographer sees a certain justice in the attribution because he
judges his account to be clearer; certainly it avoids the somewhat unusual notation
that Dedekind used.
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What concerned both mathematicians was to devise a set of axioms that would
suffice to prove the properties of the natural numbers (which, for brevity, I shall simply
call numbers).

There are many versions of the Dedekind-Peano approach, but all are equivalent
apart from minor differences. The one I shall follow here is due to the American
textbook writer C C MacDuffee (Wiley: 1940). In MacDuffee’s version, there are five
Peano Axioms:

1. There exists a number 1.
. Every number a has a successor a*.
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3. The number 1 is the successor of no number.
4. Ifa™ =0b",thena = b.
5

. If a set of numbers contains 1 and also contains the successor of every number,
then it contains all numbers.

There are slightly different versions of these as given by different authors. For
example, some treat the first two as definitions rather than as axioms, and others give
the different axioms in somewhat different order, etc. Here I deal with them as I have
just listed them and comment sequentially on each.

In starting the count at 1, MacDuffee is following Dedekind rather than Peano.
Peano himself started the count at 0 rather than 1, and this is the more modern way of
looking at things. However, the psychological relation to the counting process makes
MacDuffee’s choice more natural. I discussed this question at some length in my
column in Vol. 45, No. 2.

The second axiom introduces the other key element in the process. There is to be
a succession of numbers beginning with 1. The first two axioms introduce these con-
cepts. I referred above to these axioms as being “definitions”, but strictly speaking
this is a little imprecise. Rather 1 and succession are undefined notions. This means
that they have no strict definition in terms of the system being developed. [Psycho-
logically, however, we know that we are talking about our familiar counting numbers:
how we start at 1 and continue a succession of subsequent numbers. As MacDuffee
puts it: “They are not, however, truly undefined, for they are implicitly defined by the
postulates they are assumed to satisfy.”]

The third axiom makes the number 1 special; it is the start of the succession. No
other number has this status.

The fourth makes the successor of each number unique; two different numbers
cannot share the same successor.

It is the fifth of these axioms that incorporates the inductive idea. If you compare
the statement of this fifth axiom with the description of the inductive principle given
above, you will see that the two ways of looking at things are the same: the set of
numbers that exhibit a property is complete if it contains 1 and the successor of every
number.



With this behind us, we are now in a position to develop the basic rules of arith-
metic. The first thing we need to do is to develop the laws of addition. So we have to
start with a definition of what we mean by addition. The definition itself is inductive.?
It comes in two parts. We begin by saying what we mean by a + 1 for some number a.
We have:

a+1l=a". (0.1)

This means that if we add 1 to a number, the result is the next number in the se-
quence. The second half of the definition says what happens if (having got some way
with our definition) we wish to proceed further.

a+b" = (a+b)". (0.2)

The idea is that we start by adding 1 according to Equation (1) and then we can use
Equation (2) to add 17 (or more familiarly 2). And we just keep going in this way.
Now we have used mathematical induction to say what we mean by addition, we
can also use it to prove properties of the addition process. First, we show that it is
associative, that is to say:
(a+b)+c=a+(b+c). (0.3)
The understanding of this law is that it doesn’t matter in which order we add terms.
If we first add a and b and then add ¢, we get the result as if we had first added the b

and the c and then added the result onto the number a. The proof of this property is
(surprise, surprise!) inductive. Indeed, it uses a double induction. First we show that

a+(b+1)=(a+b)+1. (0.4)

But now a+ (b+1) = a+b* by Equation (1), and this equals (a + b)" by Equation (2).
Now apply Equation (1) to the number a + b and find that we have indeed (a + b) + 1
as claimed.

In order to complete the proof, we need to show that

(a+b)+c=a+(b+c)= (a+b)+ct=a+ (b+c").

But (a+b)+c" =((a+b)+c)" byEquation (2)
=(a+ (b+¢))" by the induction hypothesis
=a+(b+c") again by Equation (2).
The proof is now complete.
Next we show that addition is commutative. That is to say:

a+b=>b+a. (0.5)
Again the proof proceeds via a double induction. First it is demonstrated that:

a+1=1+a. (0.6)

31t is somewhat of a novelty to use induction to define a process. It may be that Dedekind and Peano
were the first to do this. Certainly I know of no earlier example.
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This is clearly true if @ = 1, so to complete the first part of the induction we need to
show that if Equation (6) holds, thena®™ +1 =1+ a™.
Butnow at+1 =(a+1)+1 byEquation (1)
= (14 a)+1 by the induction hypothesis
=1+ (a+1) by the associative property just proved
=1+a" again by Equation (1).
So the first half of the inductive argument is complete.
It remains to show that Equation (5) implies that

a+b"=b"+a. (0.7)

But a+b" =a+(b+1) byEquation (1)
= (a+0b)+1 Dby the associative property
=1+ (a+b) Dby the first part of the proof
=1+ (b+a) by the induction hypothesis
= (1+b) +a again by the associative property
= (b+1) +a again by the first part
=b"+a by Equation (1).

The proof is now complete.

These two properties (associativity and commutativity) assure us that in adding
any set of numbers, we may take them in any order we please without affecting the
result. When Iwas in Year 4 of my schooling, there was a fashion for addition problems
known colloquially as “long and cross tots”. Such a problem presented the student
with a rectangular array of numbers. Each column was to be added to give a partial
sum of the entire array, and likewise each row. The partial sums from the columns
were added to deliver the grand total, as were the partial sums for the rows. The two
processes were to agree, giving the same number for the grand total. Of course there
were kids who thought there ought to be space for two different answers, but such
concerns met short shrift from the teachers!

After addition comes multiplication, and this too is defined inductively. We have:

ax1=a. (0.8)

axbt =axb+a. (0.9)

The first property we need to prove has a long and somewhat involved title: Multi-
plication is left-distributed with respect to addition. This means that

ax(b+c)=axb+axc. (0.10)

Whenc=1,a*(b+c)=ax(b+1)=axbt =axb+a=axb+ax1,asaresultof
Equations (8) and (9). So Equation (10) holds for ¢ = 1. It remains to show that

ax(b+c)=axb+axc=ax(b+ct)=a*xb+ (axc)".



But ax(b+c") =ax(b+c)+a by Equation (9)
= (a*b+axc)+a by the induction hypothesis
=ax*xb+ (a*xc+a) by the associative property
=axb+axch again by Equation (9).
This completes the proof.
Like addition, multiplication is associative. That is to say:

(axb)xc=ax(bxc). (0.11)

Again, the proof is inductive. Inthecasec=1, (a*b)*x1= (axb) =ax(bx1),asa
result of Equation (8).
But (axb)xct = (axb)*xc+axb byEquation (9)
= (axb) *c+axb by the inductive hypothesis
=ax*(bxc+Db) by the distributive property
=ax*(bxc+Db) by Equation (9).
The proof is now complete.
We are leading to the proof of the most difficult of the properties, the so-called
commutative law of multiplication. This states that

axb="bx*a. (0.12)

We begin with a special case, 1 * a = a * 1 = @, and again the proof is inductive. It
is clearly true for a = 1. We now need to establish that

l¥xa=a*x1=1%xa"=a"x1

Wehave 1xat =1%(a+1)

=1*xa+1x1 by the distributive law
=1lxa+1
=a+1 by the induction hypothesis
=at =a"x1 asrequired.

So now Equation (12) holds for b = 1.

It is now required to complete the proof by showing that Equation (12) implies that

a* bt =b" xa. Thisis a little tricky. We first need a subsidiary result

bt xa=bxa+a. (0.13)

The proof is once again inductive. It holds for @ = 1, because, by Equation (8),
btxl=0"=b+1=bx1+1
And now we need to show that Equation (13) implies that

bt xat =bxat +a't.

We have bt *xa®™ =0b"xa+b" by Equation (9)
=bxa+a+b+1 by theinduction hypothesis
=bxa+b+a+1 byEquation (5)
=bxat +at again by Equation (9).
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This completes the proof of the subsidiary result.

With this behind us, the proof of commutativity, Equation (12), is straightforward.
We have seen that it is true for ¢ = 1, and now we need to show that a x b+ = b* x a
follows from the inductive hypothesis. But

axb"=axb+a=bxa+a=0"xa.

I leave the reader to fill in the details.
There remains one final property to be proved: multiplication is right-distributed
with respect to addition, i.e.

(b+c)xa=bxa+cxa. (0.14)

And this time we need not use an inductive argument, because the result is a ready
corollary of Equations (10) and (12).

That the proof of Equation (12) (commutativity) is the most difficult and intricate
is fitting. Different sorts of numbers build on the simple natural numbers we have
been discussing here. There are signed (directed) numbers, rational numbers, real
numbers, complex numbers and more exotic ones beyond that. The commutative law
holds for all these up to and including the complex numbers, but no longer applies
beyond those. As we move to ever more complicated number systems, our familiar
laws of algebra start to break down. Equation (12) is the first to go.

I incline to the view also that the commutative law of multiplication is psycholog-
ically the most difficult of the familiar laws for us to grasp. Certainly this was my
own experience. When I was in Year 5, the most challenging task set for us was the
memorization of the multiplication table. It was my mother who pointed out to me
that 3 x 4 = 4 x 3 and so on. Certainly this piece of information greatly reduced the
magnitude of the task involved, and so I found it a great help. Nonetheless I did not
accept that it was universally true. It seemed to me eminently possible that it only ap-
plied to the small numbers encountered in the table itself. For several years, I would
multiply what to me were large numbers in the hope of discovering a counterexample.
Needless to say I had no success!

Eventually, I came up with an argument that made the law apparent to me. It went
as follows: the number n x m can be represented an a rectangular array of n rows, each
containing m objects, while the number m x n could be represented an a rectangular
array of m rows, each containing n objects. The diagram below illustrates the situation.

* % % %

* % % % * % % % %k
* % % % * % % % %k
* % % % * % %k % %k
* % % % * % %k % %

/! /

Viewed from the bottom left, an observer would count n (here 4) columns to the
right and m (here 5) rows to the right. But if the array were rotated, the position
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would be reversed. In fact, we need not even rotate the array: merely view it from
a different direction. Once I realized this, I was immediately convinced, because it
seemed obvious that neither the rotation nor the different viewpoint could possibly
affect the actual number of objects. This argument is, to my mind, utterly convincing.
However, it probably falls short of being a strict proof.

In a vague way, I must have realized this because, when I later discovered MacDuf-
fee’s account and the Peano axioms, I immediately became a convert!



