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History of Mathematics: Making the Imaginary Real and

Respectable
Michael A B Deakin'

Back in 2005, I devoted two of these columns to the history of complex and imagi-
nary numbers. Here I return to the theme, but take a different slant on it, telling how
an initially suspect notion became respectable. Let me begin by recapping the source
of the difficulty. We have the basic rules of arithmetic that tell us that:

FXF=—X—=4 +X—=—X+=—

It seems that there is no possibility of finding v/—1. Yet, as outlined in my earlier
treatment, the notion proved useful (indeed, more than that, necessary) for a complete
account of the cubic equation. When I was still in High School, my Maths teacher airily
remarked: “There’s not really a problem; you just invent a square root, v/—1 = i, and
proceed as if nothing untoward has happened”. In other words, if we do this, it works,
and really no more needs to be said. Something like this attitude must have informed
the mathematics practiced for some 400 years before his remark. The number i was
designated as “imaginary”, but dealt with exactly as if it were an ordinary, common or
garden, real number.

Numbers that combined the familiar “real” numbers with these new “imaginary”
ones were designated as “complex”, but otherwise subjected to exactly the same rules
of arithmetic as the ordinary “real” numbers. So, if o + i3 were one complex number
and ~+ 19 another, these numbers could be added: (a+i5)+ (y+id) = (a+7)+i(5+9),
subtracted: (o +i3) — (y+1) = (o — ) +i(8 — §) and multiplied: (o +i5) x (y+1id) =
(ay — B0) +i(By+ ad), where in this last computation, we have used the result i* = —1,
but otherwise proceeded perfectly normally.

When it came to division, a subterfuge was (and still is) employed; one that prob-
ably seemed more natural when I was a boy than it does today, so I will digress for
a while to provide background. Suppose you want to calculate 1/1/2, that is to say
1/1.4142... . Well today this is just a matter of pressing a couple of buttons on your
calculator, but back then this was not a possibility, and 1.4142... is a difficult num-
ber to divide by if you are doing it by hand. So one did a little preliminary work:

1/ V2 = % = \/5/2 ~ 0.7071... . Suddenly a difficult calculation has been made
trivially easy.
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A rather more typical example is provided by the problem 1/ (14 v/2). Here the

procedure is to write 1+1\/§ = (1+\/1§_)\(/1§fﬁ) = 11__‘? = /2 — 1= 0.4142... . Notice the

cunning use of the “difference of two squares” formula.

This procedure was referred to as “rationalizing the denominator”. So, when it
comes to complex numbers, we rationalize the denominator (or, more precisely, realize
it). The general formula, whose derivation I leave to the reader, is

a+if __ ay+B36 +i By—ad
Y+id T 42462 y2462 "

(But note that the “real” part, i.e. the first term, is a real number and the “imagi-
nary”part, i.e. the second term, with its factor of i, is an imaginary number.)

So, we can simply follow the teacher’s advice and “proceed as if nothing untoward
has happened”.

However, our difficulties as students arose because this wasn’t at all how our text-
book dealt with the matter. The text defined a complex number as a pair of real num-
bers [«, 3] subject to a law of addition [« 8] + [v,0] = [a + v, 5 + ] and a law of multi-
plication [, 5] x [v,0] = [ay — 86, By + ad]. It was pointed out that the subclass [« 0]
of the complex numbers had “properties much like those of the real” numbers, indeed
were “sometimes called” real, while those of the form [0, 3] were referred to as “imag-
inary”. In particular, it was customary to write [0, 1] = i. One can readily check that
0,1]* = [~1, 0], in other words i*> = —1.

But the question that nagged with us was “Why bother with all this rigmarole,
when the teacher’s ofthand remark dealt with the matter perfectly well?”.

The textbook’s approach was usually attributed to the Irish mathematician William
Rowan Hamilton (1788-1856), and, of course, he didn’t introduce it just to be perverse.
What worried him (and in truth other mathematicians along with him) was the logical
justification of the complex numbers. It was all very well to ignore the problem and
“proceed as if nothing untoward has happened”, but this procedure of ignoring the
difficulty didn’t make it go away!

What Hamilton did was to describe complex numbers in quite ordinary terms.
There was nothing “imaginary” involved at all. We could sum it up by saying that
the second (“imaginary”) component was no more imaginary than the first and the first
(“real”) component no more real than the second.

Hamilton’s approach also showed very clearly the relation of the complex numbers
to the geometry of the plane, because the complex number [«, 3] could be represented
as the point [, 3] in the usual co-ordinate system. Indeed just as the real numbers cor-
respond exactly to the points on a “number line”, so the complex numbers correspond
exactly to the points of a plane.

Mathematicians before Hamilton must have intuitively grasped this connection.
Although Hamilton wrote in 1837, complex numbers had been in the public domain
ever since the 1545 publication of Girolamo Cardano’s Ars Magna. In the intervening
years, they had been studied by (inter alia) Johann I Bernoulli (1667-1748), Abraham de
Moivre (1667-1754), Roger Cotes (1682-1726) and Leonhard Euler (1707-1788). Many



of the discoveries made in the course of these people’s work made at least implicit
reference to the geometric interpretation,

A clear case of the use of the geometric approach, however, occurs in the work of
Carl Gauss (1777-1855). Gauss stated and proved what is now called The Fundamental
Theorem of Algebra. Indeed, over the years he gave four different proofs of it. The
theorem concerns a polynomial expression

p(z) = 2" + a12" !t + ax2" ? + ... + ay_12 + a,, where n is a positive integer,
z a (typically complex) variable, and the other symbols denote constants.

The theorem states that the expression p(z) possesses at least one zero, i.e. there is
at least one? value z; for which p (z;) = 0.

Gauss’s four proofs were published in 1799, 1815, 1816 and 1848. The fourth made
explicit use of the geometric interpretation, but otherwise closely resembled the first.
This has led many commentators to speculate that he had this approach very much in
mind as early as 1799. In that case therefore Hamilton would not have been the first
to envisage the complex numbers as pairs of real ones.

In fact we now know on other grounds that he was not. That honor rightly belongs
to one Caspar Wessel (1745-1818). Wessel was not in fact a professional mathematician,
but rather a surveyor and cartographer (map-maker). His sole foray into mathematics
proper was a paper published in 1797 by the Royal Danish Academy of Sciences, but
probably written some ten years before this. This was explicitly concerned with the
nature of complex numbers and also explicitly considered them as pairs of reals. As
this publication clearly predates Hamilton’s, the priority is clearly Wessel’s.

As if this were not enough, there is yet another claimant with excellent credentials:
Jean Argand (1768-1822). We have seen that Wessel was not a professional mathemati-
cian. Nor was Argand. He was an accountant. Nonetheless he published his geo-
metrical interpretation of complex numbers in a privately published booklet printed
in 1806. He also left his name off the work, which was thus completely anonymous.
However a copy was sent to the eminent mathematician Adrien-Marie Legendre (1752-
1833), who in turn passed it on to Frangois Frangais (1768-1810). With Francais” death,
the booklet came into the hands of his brother Jacques (1775-1833). Jacques was so
taken with the idea that he published an article based on it in one of the leading math-
ematical journals of the day. Jacques stated that his work was based on one by an
unknown author. In consequence, Argand came out of hiding and revealed himself
as the author in question. A paper based on his earlier work appeared in the same
specialist journal, and so Argand was accorded due credit.?

Nonetheless, the work of Wessel and Argand went largely ignored, probably be-
cause of their amateur status. Wessel’s work had appeared in the mainstream mathe-
matical literature; nonetheless nobody had noticed. That Argand’s initial anonymous

2A ready corollary tells us that there are in fact exactly n such zeroes (although in certain unusual
cases some may be equal to others).

3Argand went on to other mathematical researches, most notably a proof of the Fundamental Theo-
rem of Algebra.



booklet made no waves is understandable, but the work of Jacques Frangais should
have rectified this. Argand’s name now attaches to the plane on which the complex
numbers are represented: the complex plane or Argand Diagram. Wessel is accorded no
such honor.

There is a further property of the complex numbers that needs attention. It is
one that we certainly would have taken for granted during our school years, but it is
actually quite surprising, and it needs to be proved. It is absolutely vital if we are to
use what in effect the algebra of the reals in in this extended context. That is to say, it
is absolutely vital if the teacher’s approach is to succeed.

It goes like this.

If 2, is one complex number, and 2, is another, and if z;2; = 0, then either
zZ1 = 0 or 2o = 0.

We are so used to the truth of this proposition when asserted of the reals, that we
are apt simply to assume without question that it applies to the complex numbers.
Actually it is a quite surprising result. In technical language, it asserts that the com-
plex numbers form a division algebra. Division algebras actually constitute a very rare
species. The quaternions (based on sets of four real numbers)* give another case but
only at the cost of abandoning the commutative law of multiplication (i.e. if (), is one
quaternion and ()2 another then it will not in general be true that Q@2 = Q2Q)1). Then
there are various systems of octonions (based on sets of eight real numbers) which are
also classed as division algebras, but here we have to abandon as well the associative
law of multiplication (i.e. if O; is one octonion, O, another and Oy a third, then it will
not in general be true that O, (0;03) = (0O103) O3). These are all the division algebras
there are. Thus the complex numbers constitute the only division algebra (other than
the reals) for which all the usual laws of arithmetic apply.

The proof of the theorem just stated is not particularly difficult, but it isn’t trivial
either. Here is how it goes.

Put z; = a+if and z; = y+id. Then we need to show that (a + i) (v + id) =
0 implies either « = 8 = O or else ¥ = 6 = 0. Expanding the product and
equating both the real and the imaginary parts to zero yields two equations:

ay—p£6=0
By + ad = 0.

There are two possibilities: & = 0 and o # 0. First consider the case o = 0.
This implies that either 3 = 0 or 6 = 0 and also either 3 = 0 or v = 0. If
8 = 0, we are done, because in that case z; = 0. Or else we could have
v =6 =0, in which case z; = 0. On the other hand if & # 0, we may divide
by it to find v = 36/, and so deduce that (5% 4+ a?)§/a = 0. In order to
satisfy this equation, we need either « = = 0, which cannot be since we
assumed that o # 0, or else § = 0, which implies that v = 0, so that z, = 0.

*Quaternions were discussed at some length in my Function columns for June 1994 and October 1995.
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This completes the proof, and as was mentioned above the result is somewhat sur-
prising. Nonetheless, it is something we might well consider as obvious and not for a
moment in doubt. Certainly our teacher’s remark, “there’s not really a problem; you
just invent a square root, v/—1 = 4, and proceed as if nothing untoward has happened”,
could be seen as predisposing one to accept the result without question.

However, in a sense, it is this property that justifies the teacher’s approach. Without
it, the properties of the complex numbers would be very different from those of the
reals. The proof itself does not depend in any way on whether we use the teacher’s
approach or the textbook’s; I have given it as the teacher would have, but I could quite
easily have given it from the other perspective. In fact, the proof itself would hardly
alter.

So we are brought back to the question my fellow students and I asked all those
years ago: “What is the point of all this rigmarole?”. The answer is subtle, and almost
philosophical as much as strictly mathematical. What the “rigmarole” tells us is that
the imaginary and complex numbers have exactly the same claim to existence as the
reals. It is exactly the “rigmarole” that justifies the teacher’s position. Without it,
we may proceed by “just invent[ing] a square root, v/—1 = i, and proceed[ing] as if
nothing untoward has happened”, but we really have no notion of why this piece of
legerdemain actually works.

However, I will close by quoting the final words of another textbook writer, H. A.
Thurston in his book The Number System,

“If we ignore the distinction between a real complex number [i.e. [z, 0]] and
the real number corresponding to it [i.e. z] ... it will follow ... that each
complex number is of the form x + iy, where z and y are real numbers and
i* = —1. Moreover the definitions of multiplication and addition are what
would be obtained by writing [a,b] as a + ib and so on, and multiplying
out as though i were a real number, and then replacing i* by —1 wherever
it occurs. It follows that every calculation with complex numbers can be
carried out by this process, and that we can treat complex numbers from

the usual elementary point of view.”

In other words, the teacher’s subterfuge works fine!



